
Locally Ordinal Bayesian Incentive Compatibility

Miho Hong∗and Semin Kim†

March 26, 2020

Abstract

We investigate the locally ordinal notion of Bayesian incentive compatibility

(LOBIC) of deterministic voting mechanisms. We consider a standard Bayesian

environment where agents have private and strict preference orderings on a fi-

nite set of alternatives. Our main domains of preferences over alternatives are

even larger than a broad class of domains — a few of its constituents being the

unrestricted domain, the single-peaked domain, and the single-dipped domain.

With independent and generic priors, we show that LOBIC of a mechanism

combined with unanimity implies the tops-only property. Furthermore, we find

a subclass of the domains where a mechanism with LOBIC and unanimity is

dictatorial. We study the sufficiency of local incentive constraints for full incen-

tive constraints and the relationship between LOBIC and dominant strategy

incentive compatibility.

Keywords: Incentive compatibility, Local incentive compatibility, Tops-only

property, Dictatorship, Connected domains, Unanimity
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1 Introduction

Incentive compatibility of a social choice function (or a voting mechanism) has been

one of the foremost concerns in mechanism design. Gibbard (1973), Satterthwaite

(1975), and Moulin (1980) are some seminal papers that address this subject. How-

ever, when the number of alternatives or the set of admissible preferences is large,
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it becomes onerous and costly to verify that a social choice function (scf) satisfies

every incentive constraint. Therefore, the sufficiency of local constraints — on small

distortions in reporting preferences — for full incentive compatibility has attracted

substantial attention from the mechanism design literature: some recent papers in-

clude Carroll (2012), Sato (2013), and Mishra (2016). Particularly, we investigate the

concept of local incentive compatibility suggested by Mishra (2016), locally ordinal

Bayesian incentive compatibility.

Meanwhile, unanimity of an scf is a mild form of efficiency1 — whenever every

agent agrees on an alternative as the best, the scf should choose that alternative.

Hence, it is quite natural to require an scf to be unanimous. Thus, we also mainly

consider unanimous scfs.

This paper answers the following questions concerning locally ordinal Bayesian

incentive compatible scfs combined with unanimity. First, when do those scfs invoke

a strong and controversial property called tops-onlyness? Tops-onlyness exclusively

responds to changes in the tops of preference profiles. For a mechanism designer,

it is sufficient to consider scfs with this property as candidates. So, it can ease the

complexity in voting mechanism design but prohibit free design. Second, when do the

scfs have the undesirable property called dictatorship? Dictatorship requires the ex-

istence of a dictator whose top preference is always chosen. Third, when are the local

incentive constraints sufficient to imply full incentive compatibility? In this case, the

designer can extremely decrease the number of incentive constraints to be imposed

upon agents. Finally, what is the relationship between local incentive compatibility

and dominant strategy incentive compatibility (strategy proofness), which is exten-

sively studied in the literature? These questions are not innovative but interesting

since many other studies answer similar questions focusing on the dominant strategy

incentive compatibility of unanimous scfs.

Our framework is built on a standard Bayesian environment where individuals

have private and strict preference orderings on a finite set of alternatives. We con-

sider profiles of the independent and generic priors introduced in Majumdar and Sen

(2004) and studied in Mishra (2016)2. Additionally, we restrict our attention to deter-

1Holströmes and Myerson (1983) classify the concepts of Pareto efficiency depending on the stage
of information regarding the types of agents, among which, Ex-post Pareto efficiency is the weakest.
Azrieli and Kim (2014) explain that any Ex-post Pareto efficient scf is unanimous.

2Specifically, Majumdar and Sen (2004) prove that their priors are generic in a topological sense
under the unrestricted domain. Mishra (2016) explains that the identical proof works in restricted
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ministic ordinal scfs that only account for the ordinal preferences of individuals. There

are two main concepts of incentive compatibility for these scfs: dominant strategy

incentive compatibility (DSIC) and ordinal Bayesian incentive compatibility (OBIC)

introduced by d’Aspremont and Peleg (1988). An scf is OBIC if for any agent, the

interim outcome probability vector from truth-telling first-order stochastic dominates

any other interim outcome probability vector obtained from lying. Mishra (2016) de-

fines OBIC with respect to generic priors (G-OBIC). Local incentive constraints are

weakened versions of each full incentive compatibility (DSIC and G-OBIC); those that

merely pertain to local distortions: local dominant strategy incentive compatibility

(LDSIC)3. and generic-local ordinal Bayesian incentive compatibility (G-LOBIC).

For the domain of preferences, we assume that the set of admissible preferences

is connected following the notions in Sato (2013): from any preference ordering to

another, there is a path of adjacent orderings that are preference orderings only with

the difference of a pair of consecutively ranked alternatives. That is, any large distor-

tion in preferences can be decomposed into a sequence of local (or small) distortions.

Additionally, Sato (2013) defines an important subclass of connected domains, con-

nected domains without restoration, where a certain type of decomposition is possible.

For any pair of preferences, there exists a path along which any adjacent distortion is

not reversed (or restored) later in the sequence. Many well-known and widely studied

domains, such as the unrestricted domain and the full single-peaked domain, lie in

this class of domains. However, we consider an even larger class of domains, weakly

connected domains without restoration. To be clear, Sato (2013) introduces these

domains as necessary yet not sufficient domains for the equivalence between LDSIC

and DSIC. Since this class of domains is sufficient for our main results, we name it.

Whereas the former class necessitates the existence of a single path where the ranking

between any two alternatives is not restored, our main domains merely demand the

existence of one path for each pair of alternatives where the ranking between them is

not restored. Note that the gap between two classes of domains can be larger as the

number of alternatives grows.

We discuss our results referring to the existing literature. Our first main result

shows that on the weakly connected domain without restoration, G-LOBIC scfs with

unanimity are tops-only (Theorem 1). Tops-onlyness is desirable for a mechanism

domains.
3LDSIC corresponds to AM-proof in Sato (2013).
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designer (or a social planner) since it saves the cost of collecting and processing data.

Tops-onlyness is also desirable for agents, who reveal their preferences in terms of

privacy. However, tops-onlyness also restricts the design mechanism. Our result is in

line with the literature on tops-onlyness — such as Weymark (2008) and Chatterji

and Sen (2011) — which shows that DSIC with unanimity implies tops-onlyness on

several domains. We generalize this result by weakening DSIC to G-LOBIC.

Second, we further find the subclass of weakly connected domain without restora-

tion where G-LOBIC scfs with unanimity are dictatorial (Theorem 2). The property

for the subclass is that for any adjacent preference orderings with the top swapped

alternatives x, y in the domain, there exist two other preference orderings that show

the disagreed preference over {x, y} and whose tops are not x, y. Note that these tops

could be the same or not. We call this disagreement property of domain, which is in

line with the approach of the literature on dictatorship — such as Aswal et al. (2003),

Sato (2010), and Achuthankutty and Roy (2018) — which imposes the restriction on

the top two alternatives of preference orderings. These authors study several domains

where DSIC scf with unanimity are dictatorial. Another notable difference is that

these studies necessitate the property of domain (called regular property in the liter-

ature) where every alternative should be the top of some preference orderings, which

may be stronger as the number of alternatives grow. However, our property becomes

relatively weaker.

Next, we study the sufficiency of local incentive constraints. Sato (2013) shows

that weakly connected domains without restoration are necessary but not sufficient

for the equivalence between LDSIC and DSIC. However, we show that assuming una-

nimity restores the equivalence between LDSIC and DSIC and invokes the equivalence

of G-LOBIC and G-OBIC (Theorem 3). While the former equivalence has been dis-

cussed in the literature, to our knowledge, we are the first to study the equivalence

of ordinal Bayesian incentive constraints. This result is particularly relevant when a

mechanism designer considers DSIC to be demanding. For example, DSIC and unan-

imous scfs are inevitably dictatorial on the unrestricted domain leaving OBIC scfs as

natural substitutes. In addition, we show that connected domains without restoration

are sufficient but not necessary for the equivalence between G-LOBIC and G-OBIC

without unanimity, which highlights the importance of unanimity (Proposition 1).

Finally, we illustrate one of the theoretical implications of our results. Mishra

(2016) — the work most related to ours — studies the conditions for the equivalence of
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G-LOBIC and DSIC in restricted domains. We strengthen Mishra’s (2016) results by

generalizing the sufficient domain to the weakly connected domain without restoration

and relaxing the exogenous restriction of tops-onlyness on scfs (Theorem 4)

The rest of the paper is organized as follows. We present a detailed framework in

Section 2. In Section 3, we demonstrate our main results. All of the proofs are in the

appendix.

2 The Model

2.1 Framework

Consider a standard Bayesian environment with private types.4 The set of agents is

N = {1, 2, ..., n}, and the set of alternatives is A with m ≡ |A| ≥ 3. Let P denote

the set of all strict linear orders over A. Then, P is the unrestricted domain, and

a proper subset D ⊂ P is a restricted domain. Each agent i ∈ N has a private

preference ordering (or a type) Pi ∈ D. For any preference ordering P ∈ D and any

pair of alternatives {a, b} ∈ A, aP b if and only if a is strictly preferred to b by P .

A deterministic and ordinal scf is a mapping, f : Dn → A. We focus on scfs

that choose an alternative whenever it is agreed by all agents as the best alternative;

unanimous scfs. For any preference ordering P ∈ D and any integer k ∈ K ≡

{1, ...,m}, let P (k) denote the kth-ranked alternative for P .

Definition 1. An scf f is unanimous if for any P ∈ Dn and a ∈ A, f(P ) = a

whenever a = Pi(1) for every agent i ∈ N .

We assume that each agent independently draws their preference using a prob-

ability distribution µi : D → [0, 1], which is common knowledge for every agent.

For any Q ⊆ Dn−1, agent i’s belief of others having a preference profile in Q is

µ(Q) =
∑

P−i∈Q

×
j 6=i

µj(Pj). We mainly consider the following profile of priors.

Definition 2 (Majumdar and Sen 2004). A profile of priors {µi}i∈N is generic if for

every Q,R ⊆ Dn−1, we have [µ(Q) = µ(R)] ⇒ [Q = R].

The generic prior requires that the probabilities of any two distinct subsets of

preference profiles of n − 1 agents should be different. Majumdar and Sen (2004)

and Mishra (2016) mathematically show that these priors are generic in a topological

sense. Denote this set of distributions by C and the set of all independent distributions

4We borrow several concepts and notations from Mishra (2016).
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by ∆I . They say that C is large and generic in ∆I with two properties: (1) C is open

and dense in ∆I and (2) ∆I − C has Lebesgue measure zero.5

2.2 Concepts of Incentive Compatibility

We now define several IC constraints: from the most stringent constraint, DSIC.

Definition 3. An scf is dominant strategy incentive compatible (DSIC) if for

every i ∈ N , every Pi ∈ D, and every P−i ∈ Dn−1, there exists no P ′
i ∈ D such that

f(P ′
i ,P−i)Pi f(Pi,P−i).

A weaker concept of incentive compatibility is LDSIC. We define some necessary

concepts. For any two types P, P ′ ∈ D, we say that P ′ is an (a, b)-swap of P if

for some a, b ∈ A and k ∈ K, P (k) = P ′(k + 1) = a, P (k + 1) = P ′(k) = b and

P ′(j) = P (j) for all j ∈ K \ {k, k + 1}. Additionally, a pair of types P, P ′ ∈ D is

adjacent if P ′ is an (a, b)-swap of P for some {a, b} ⊂ A and denote the adjacent

alternatives by A(P, P ′) = {a, b}.

Definition 4 (Mishra 2016). An scf is locally dominant strategy incentive com-

patible (LDSIC) if for every i ∈ N , every Pi ∈ D and every P−i ∈ Dn−1, there

exists no adjacent type P ′
i ∈ D to Pi such that f(P ′

i ,P−i)Pi f(Pi,P−i).

Denote the union of a and the set of alternatives preferred to alternative a to type

Pi as B(a, Pi) = {a′ ∈ A : a′ = a or a′Pia}. In addition, for each agent i ∈ N , let

πf
i (a, Pi) ≡

∑

P−i∈Dn−1:f(Pi,P−i)=a

µ(P−i). Now we define the ordinal notion of Bayesian

incentive compatibility.

Definition 5 (d’Aspremont and Peleg 1988). An scf f is ordinally Bayesian in-

centive compatible (OBIC) with respect to {µi}i∈N if for all i ∈ N , Pi, P
′
i ∈ D

and all a ∈ A, we have

πf
i (B(a, Pi), Pi) ≥ πf

i (B(a, Pi), P
′
i ).

6

f is G-OBIC if it is OBIC with respect to a profile of generic priors µ.

5The important non-generic prior is the uniform prior that assigns the same probability to every
preference.

6With some abuse of notation, let π
f
i (B(a, Pi), P

′
i ) denote the sum of probabilities of pref-

erence profiles such that f(P ) ∈ B(a, Pi) when reporting P ′
i . That is, π

f
i (B(a, Pi), P

′
i ) ≡

∑

P−i∈Dn−1:f(P ′

i
,P−i)∈B(a,Pi)

×
j 6=i

µj(Pj)
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As DSIC is weakened to LDSIC, OBIC can be weakened in the same spirit.

Definition 6 (Mishra 2016). An scf f is locally ordinally Bayesian incentive

compatible (LOBIC) with respect to {µi}i∈N if for all i ∈ N , for all a ∈ A, and

for all pair of adjacent types Pi, P
′
i ∈ D, we have

πf
i (B(a, Pi), Pi) ≥ πf

i (B(a, Pi), P
′
i ). (1)

f is G-LOBIC if it is LOBIC with respect to a profile of generic priors {µi}i∈N .

2.3 Domains of Preferences

Finally, we define some concepts for the domain of preferences. Any pair of types

P, P ′ ∈ D is connected if there exists a sequence of types (P = P 0, P 1, ..., P h, P h+1 =

P ′) in D such that for every l ∈ {0, 1...., h}, P l and P l+1 are adjacent.7 For each pair

{a, b} ⊂ A, a sequence in D is with {a, b}-restoration if for some distinct l, l′ ∈

{0, 1, ..., h}, A(P l, P l+1) = A(P l′ , P l′+1) = {a, b} and without {a, b}-restoration

if there exist no such swaps. A sequence is without restoration if it is without

{a, b}-restoration for any {a, b} ⊂ A.

We first define a domain in which every pair of preference orderings are connected

without restoration.

Definition 7 (Sato 2013). A domain D ⊆ P is connected without restoration if

any pair of types P, P ′ ∈ D is connected without restoration.

Mishra (2016) discusses several examples of connected domains without restora-

tion such as the unrestricted domain, the single-peaked domain, the single-dipped

domain, and some single-crossing domains. However, we consider an even broader

class of domains that includes connected domains without restoration: weakly con-

nected domains without restoration.

Definition 8. A domain D ⊆ P is weakly connected without restoration if for

each {a, b} ⊂ A, any pair of types P, P ′ ∈ D is connected without {a, b} -restoration.

The difference between two domains is in the requirement of special sequence

of adjacent types for any two pairs of types. The weakly connected domains with-

out restoration require such a sequence for each pair of alternatives a, b while the

connected domains without restoration require the single sequence for all pairs of

7We often call such a sequence a path.
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P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10

x y y y y y z z z x
y x x w w z y y x z
z z w x z w w x y y
w w z z x x x w w w

Table 1: Preference orderings in Example 1.

P 1{x, y}P 2{z, w}P 3{x, w}P 4{x, z}P 5

|{y,z} {z,w}|

P 10{x, z}P 9{x, y}P 8{x, w}P 7{y, z}P 6

Figure 1: Adjacency between preference orderings in Example 1.

alternatives. The natural question is the gap between the two domains. When the

number of alternatives is three, there is no gap. However, if the number is more than

three, we can easily observe the gap. The following example shows the gap for the

case of four alternatives.

Example 1. Let N = {1, 2} and A = {x, y, z, w}. Consider the domain D

composed of preference orderings from P 1 to P 10 in Table 1.

Figure 1 shows the adjacency between preference orderings in Example 1. The

notation P 1 {x,y}P 2 means that P 1 and P 2 are adjacent and A(P 1, P 2) = {x, y}.

The other parts can be interpreted similarly. Let us check whether this domain is

connected without restoration or not. The critical observation is that for P 1 and P 6,

all the two sequences connecting P 1 and P 6 are with {z, w} or {y, z}-restoration.

However, for any pair of types in the domain, there exists a sequence without each

pair of alternatives. Thus, it is not a connected domain without restoration, but a

weakly connected domain without restoration.

Note that it is obvious that the greater the number of alternatives, the larger the

gap between the two domains. As in the example, we do not require the regularity

property for a domain where every alternative should be top of some preference

ordering. This implies that the gap could be even lager than with it is the regularity
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property.

3 Results

3.1 Tops-onlyness

An scf is tops-only if it only takes into account the top alternative of each agent.

Definition 9. An scf f is tops-only if for any P ,P ′ ∈ Dn, f(P ) = f(P ′) whenever

Pi(1) = P ′
i (1) for all i ∈ N .

Our first main result shows that on the weakly connected domain without restora-

tion, tops-onlyness is necessary for G-LOBIC scfs under unanimity.

Theorem 1. Let f : Dn → A be an scf where D ⊆ P is a weakly connected domain

without restoration. If f is unanimous and G-LOBIC, it is tops-only.

3.2 Dictatorship

An scf is dictatorial if there exists an agent (dictator) whose top alternative is chosen

for any preference profile.

Definition 10. An scf f is dictatorial if there exists an agent i ∈ N such that for

any P ∈ Dn, f(P ) = Pi(1).

We define another domain property, disagreement property that shows the dis-

agreement of preference over the top-swapped alternatives.

Definition 11. A domain D ⊆ P satisfies a disagreement property if for any adjacent

types P, P ′ such that P (1) = x, P (2) = y and A (P, P ′) = {x, y} , there exists a pair

of types P̂ , P̄ such that P̂ (1) , P̄ (1) /∈ {x, y} and xP̂y, yP̄x.

Remark. P̂ (1) and P̄ (1) could be the same or not. We observe that the domain

in Example 1 satisfies the disagreement property with P̂ (1) = P̄ (1) for each pair of

top-swapped alternatives, {x, y},{y,z},{z, x}. Additionally, note that this property

concerns only the pair of top-swapped alternatives, not all alternatives.

Our second main result is that if a weakly connected domain without restoration

satisfies the disagreement property, any G-LOBIC scf under unanimity is dictatorial.

Theorem 2. Let f : Dn → A be an scf where D ⊆ P is a weakly connected domain

without restoration and satisfies a disagreement property. If f is unanimous and

G-LOBIC, it is dictatorial.
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The notable connected domain without restoration that does not satisfy the dis-

agreement property is the single-peaked preference domain.

3.3 Local Domains and Sufficiency of Local Incentive Constraints

Mishra (2016) calls a domain local if LDSIC is equivalent to DSIC in that domain.

Sato (2013) shows that connected domains without restoration are local. We show in

the following proposition that the equivalence of G-LOBIC and G-OBIC also holds

in these domains.

Proposition 1. Let f : Dn → A be an scf where D is a connected domain without

restoration. Then, f is G-LOBIC if and only if it is G-OBIC.

While G-LOBIC and LDSIC are sufficient, respectively, for G-OBIC and DSIC in

connected domains without restoration, it can be shown that there exist scfs that are

LDSIC but not DSIC nor OBIC in weakly connected domains without restoration8.

However, the following theorem shows that under unanimity, the equivalences are

restored.

Theorem 3. Let f : Dn → A be a unanimous scf where D is a weakly connected

domain without restoration. Then, f is G-LOBIC (resp. LDSIC) if and only if it is

G-OBIC (resp. DSIC).

3.4 Locally Ordinal Bayesian Incentive Compatibility and Dominant Strat-
egy Incentive Compatibility

Using the results from above, we study the relationship between G-LOBIC and DSIC.

Mishra (2016) investigates two weak versions of Maskin monotonicity in the context

of this relationship.

Definition 12 (Mishra 2016). An scf f satisfies elementary monotonicity if for

every i ∈ N , every P−i ∈ Dn−1, and every Pi, P
′
i ∈ D such that P ′

i is an (a, b)-swap

of Pi for some a, b ∈ A and f(Pi,P−i) = b, we have f(P ′
i ,P−i) = b.

The author first shows that G-LOBIC combined with elementary monotonicity

implies DSIC in local domains. Then, the author further relaxes monotonicity to

hold only in a restricted set of preference profiles. For a domain D ⊂ P , a profile of

8Example 3.2 in Sato (2013) serves this purpose.
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preferences P ∈ Dn is a top-2 profile if for every i, j ∈ N , Pi(k) = Pj(k) for all

k > 2. Let D2(2) be the set of all top-2 profiles in D.

Definition 13 (Mishra 2016). An scf f : Dn → A satisfies weak elementary

monotonicity if f restricted to Dn(2) satisfies elementary monotonicity.

Similarly to our spirit, Mishra (2016) proves that under unanimity, elementary

monotonicity can be replaced by weak elementary monotonicity for the sufficiency

of G-LOBIC for DSIC in the single-peaked domain. In connected domains without

restoration, tops-onlyness is additionally necessary for the sufficiency. However, the

following lemma shows that an intermediate step (for the sufficiency of G-LOBIC

for LDSIC) works without the tops-only property even in weakly connected domains

without restoration.

Lemma 1. Let f : Dn → A be a unanimous scf where D is a weakly connected

domain without restoration. Then, f is LDSIC if and only if it is G-LOBIC and

satisfies weak elementary monotonicity.

Combining Theorem 3 and Lemma 1 leads to our last theorem.

Theorem 4. Let f : Dn → A be a unanimous scf where D is a weakly connected

domain without restoration. Then, f is DSIC if and only if it is G-LOBIC and satisfies

weak elementary monotonicity.

Theorem 4 is a twofold strengthening of Mishra’s (2016) results. First, whereas

Mishra (2016) presents the sufficient conditions contingent on the types of domains

— single-peaked or connected without restoration —, we present an inclusive result.

That is, we show that tops-onlyness required in Mishra’s (2016) result is redundant.

In fact, this redundancy follows from Theorem 1. Second, we extend the domain.

Showing the equivalence of LDSIC with DSIC is a crucial step in the proof of Theorem

4. While Mishra (2016) relies on the observation that connected domains without

restoration are local, we use Theorem 3 for this step. Recall that the class of weakly

connected domains without restoration is larger than the class of local domains in

Mishra (2016).

Appendix

Proof of Theorem 1. Suppose for the sake of contradiction that f is unanimous

and G-LOBIC, but not tops-only. Then, there exists an agent (for example , agent
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1), P−1 ∈ Dn−1 and two types P1, P̄1 ∈ D such that a∗ ≡ P1(1) = P̄1(1) and

f(P̄1,P−1) 6= f(P1,P−1).
9

The first step of our proof is to show that the outcome of f is invariant to adjacent

manipulations in preferences when the top alternative is fixed (Lemma 4). To do so,

we introduce a property called swap monotonicity (SM) and a result — both from

Mishra (2016) — that any G-LOBIC scf satisfies SM (Lemma 2)10. We show that on

weakly connected domains without restoration, an scf that satisfies SM has a special

property (Lemma 3) and use Lemma 2 and Lemma 3 to prove Lemma 4. Finally, we

generalize the invariance of the outcome of f for larger manipulations in preferences

with common tops, which shows that f is tops-only.

Definition 14 (Mishra 2016). An scf f satisfies swap monotonicity (SM) if for

every i ∈ N and Pi, P
′
i ∈ D such that A(Pi, P

′
i ) = {a, b} ⊂ A, we have for every

P−i ∈ Dn−1 that f(P ′
i ,P−i) = f(Pi,P−i) if f(Pi,P−i) /∈ {a, b} and f(P ′

i ,P−i) ∈ {a, b}

if f(Pi,P−i) ∈ {a, b}.

Lemma 2 (Mishra 2016). Let f : Dn → A be a G-LOBIC scf where D ⊆ P . Then,

f satisfies swap monotonicity.

Lemma 3. Let f : Dn → A be an scf where D is a weakly connected domain without

restoration. If f satisfies swap monotonicity, then it has the following property. For

any i ∈ N , Pi ∈ D, P−i ∈ Dn−1 and {a, b} ⊂ A, if f(Pi,P−i) 6= f(P ′
i ,P−i) where P ′

i

is an (a, b)-swap of Pi, then f(Pi,P
′
−i) = f(Pi,P−i) and f(P ′

i ,P
′
−i) = f(P ′

i ,P−i) for

any P ′
−i ∈ Dn−1 such that for every j ∈ N \ {i}, aP ′

j b if and only if aPj b.

Proof. Without loss of generality (WLOG), assume that f(P1,P−1) 6= f(P ′
1,P−1) for

some P1 ∈ D, P−1 ∈ Dn−1 and {a, b} ⊂ A such that A(P1, P
′
1) = {a, b}. Then

by SM, {f(P1,P−1), f(P
′
1,P−1)} = {a, b}. Assume without loss of generality that

f(P1,P−1) = a and f(P ′
1,P−1) = b and that aP2 b. Suppose P ′

2 ∈ D is a distinct

type of agent 2 such that aP ′
2 b. Then, there exists a path from P2 to P ′

2 (P2 =

P 0
2 , P

1
2 , ..., P

h
2 , P

h+1
2 = P ′

2) in D that is without {a, b}-restoration. For simplicity, for

any l ∈ {0, ..., h+ 1}, let f̄(P l
2) ≡ f(P1, P

l
2,P−{1,2}) and f̄ ′(P l

2) ≡ f(P ′
1, P

l
2,P−{1,2}).

We argue that ∀l ∈ {0, ..., h}, [f̄(P l
2) = a, and f̄ ′(P l

2) = b] ⇒ [f̄(P l+1
2 ) = a and

f̄ ′(P l+1
2 ) = b]. Since the path is without {a, b}-restoration, A(P l

2, P
l+1
2 ) 6= {a, b}.

9P−1 ≡ (P2, ..., Pn), P−{1,2} ≡ (P3, ..., Pn).
10This result is conveniently used in the proofs of Mishra’s (2016) results and also has a crucial

role in ours.
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This leaves two possible cases: A(P l
2, P

l+1
2 ) ∩ {a, b} = ∅ or A(P l

2, P
l+1
2 ) ∩ {a, b} 6= ∅.

If it is the former case, then by SM, f̄(P l+1
2 ) = a and f̄ ′(P l+1

2 ) = b. For the latter

case, assume without loss of generality that A(P l
2, P

l+1
2 ) = {a, c} where c ∈ A and

c 6= b. Then, f̄(P l+1
2 ) ∈ {a, c} and f̄ ′(P l+1

2 ) = b by SM. However, if f̄(P l+1
2 ) = c,

then f̄ ′(P l+1
2 ) = c since A(P1, P

′
1) = {a, b}, which is a contradiction. Therefore,

f̄(P l+1
2 ) = a and f̄ ′(P l+1

2 ) = b.

Since f̄(P2) = a and f̄ ′(P2) = b, f̄(P ′
2) = a and f̄ ′(P ′

2) = b. Finally, we can apply

the same process to agent 3, 4, ..., and n to complete the proof.

Lemma 4. Let f : Dn → A be a unanimous scf where D is a weakly connected

domain without restoration. If f is G-LOBIC, then for every agent i ∈ N , their type

Pi and P−i ∈ Dn−1, f(P ′
i ,P−i) = f(Pi,P−i) for any adjacent type P ′

i of Pi such that

P ′
i (1) = Pi(1).

Proof. Suppose on the contrary that for some agent (for example, agent 1), f(P ′
1,P−1) 6=

f(P1,P−1) for some adjacent preferences P1, P
′
1 with a∗ ≡ P1(1) = P ′

1(1) and some

P−1 ∈ Dn−1. Let A(P1, P
′
1) = {a, b} for some a, b ∈ A and a 6= b. Then by SM, either

[f(P1,P−1) = a and f(P ′
1,P−1) = b] or [f(P1,P−1) = b and f(P ′

1,P−1) = a] holds.

Without loss of generality, assume the former case and let a ≡ P1(k) and b ≡ P1(k+1).

Then, we can modify the preference orderings of other agents contingent on their rel-

ative rankings between a, b, and a∗. For simplicity, for any l ∈ {0, ..., h + 1}, let

f̄(P l
2) ≡ f(P1, P

l
2,P−{1,2}) and f̄ ′(P l

2) ≡ f(P ′
1, P

l
2,P−{1,2}).

Case 1: If P2(1) = a∗, take P ′
2 = P2. Then f̄(P ′

2) = a and f̄ ′(P ′
2) = b.

Case 2: If P2(1) 6= a∗ and aP2 b, take P ′
2 = P1 so that the ranking between a and

b for P ′
2 matches that of P2. Then, by Lemma 3, f̄(P ′

2) = a and f̄ ′(P ′
2) = b.

Case 3: Analogously, if P2(1) 6= a∗ and b P2 a, take P
′
2 = P ′

1. Then, f̄(P
′
2) = a and

f̄ ′(P ′
2) = b.

We can apply the same procedure to the preference orderings of agent 3, 4, ..., and

n to get f(P1, P
′
2, P

′
3, ..., P

′
n−1, P

′
n) = a 6= a∗ and f(P ′

1, P
′
2, P

′
3, ..., P

′
n−1, P

′
n) = b 6= a∗

where Pj(1) = P ′
j(1) = a∗ for all j ∈ N , which contradicts the unanimity of f .

Now, we use the lemmas above to show that f(P̄1,P−1) = f(P1,P−1), which

completes the proof of Theorem 1. It suffices to show that the equality holds if

f(P1,P−1) 6= a∗ since, by this fact, f(P1,P1) = a∗ 6= f(P̄1,P−1) is not possible.

Suppose f(P1,P−1) 6= a∗. Since D is weakly connected without restoration, there

exists a path connecting P1 and P̄1 (P1 = P 0
1 , P

1
1 , ..., P

h
1 , P

h+1
1 = P̄1) that is without
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{a∗, f(P1,P−1)}-restoration. If P
l
1(1) = a∗ for every 1 ≤ l ≤ h, that is, alternative a∗

is never swapped in the sequence, we can apply Lemma 4 to every swap of the sequence

so that f(P̄i,P−1) = f(P1,P−1). On the other hand, it is possible that there exists 1 ≤

l′ ≤ h such that P l′

1 (1) 6= a∗. Since the path is without {a∗, f(P1,P−1)}-restoration,

we have a∗ P l
1f(P1,P−1) for every 1 ≤ l ≤ h. However, Lemma 2 and Lemma 4 imply

that for any 0 ≤ l ≤ h, f(P l
1,P−1) 6= f(P l+1

1 ,P−1) is only possible when A(P l
1, P

l+1
1 ) =

{P l
1(1), P

l+1
1 (1)} and f(P l

1,P−1) ∈ A(P l
1, P

l+1
1 ). Therefore, f(P l+1

1 ,P−1) = f(P l
1,P−1)

for every 1 ≤ l ≤ h and, thus, f(P̄1,P−1) = f(P1,P−1).

Finally, suppose f(P1,P−1) = a∗ and assume that f(P̄1,P−1) 6= a∗ for the sake

of contradiction. Then, we can apply the argument above to P̄1, which results in

f(P1,P−1) = f(P̄1,P−1) 6= a∗.

Proof of Theorem 2.

Step 1) On the assumed domain, we claim that there exists a pair of alternatives

x, y and adjacent types P, P ′ such that P (1) = x, P (2) = y with a pair of types

P̂ , P̄ such that P̂ (1) = P̄ (1) /∈ {x, y} and xP̂y, yP̄x. To prove the claim, assume

that for every such pair of alternatives x, y, there is no pair of types P̂ , P̄ such that

P̂ (1) = P̄ (1) /∈ {x, y} and xP̂y, yP̄x. Then, consider the path from P to a type P̂

with P (1) 6= P̂ (1) and xP̂y without {x, y} -restoration and, similarly, a path from

P̂ to a type P̃ with P̂ (1) 6= P̃ (1) and xP̃y without {x, y}- restoration,..., until the

last different top alternative. For example, the last top swapped alternatives, {l,m}

with P , P ′ such that P (1) = l, P (2) = m. On the other hand, we can also construct

a long path from P ′ to the last type with the different top and the same preference

over {x, y} with P ′. Note that all top alternatives in the domain are divided into two

groups according to the preference over {x, y} of types. Then, consider the whole

path connected with the above two long paths. The path contains types with all

different tops and only one top connection with {l,m}. Additionally, since the domain

is connected and there is no pair of types P̂ , P̄ such that P̂ (1) = P̄ (1) /∈ {l,m} and

lP̂m, mP̄ l, all types on the path should show the same preference over {l,m} with P .

However, the disagreed domain requires that we have another type with the reversal

preference over {l,m} outside the path. This type should share one top alternative

with a type on the path, which leads to a contradiction in the assumption in the

claim.

Step 2) From the above claim, we can start adjacent types P, P ′ such that P (1) =
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x, P (2) = y, and A (P, P ′) = {x, y} with a pair of types P̂ , P̄ such that P̂ (1) =

P̄ (1) /∈ {x, y} and xP̂y, yP̄x. By unanimity, f (P, P, ..., P ) = x and f (P ′, P ′, ..., P ′) =

y. Consider the change of type for each agent from P to P ′, and there exists

an agent i such that f (Pi = P,P−i) = x and f (Pi = P ′,P−i) = y. For such

a P−i =
(

Pj ,P−{i,j}

)

, there are two cases where xPjy or yPjx. Consider xPjy

and the other case is similar. Recall, there exists a pair of types P̂j,P̄j such that

P̂j (1) = P̄j (1) /∈ {x, y} and xP̂jy, yP̄jx. By Lemma 3, f
(

Pi = P, P̂j ,P−{i,j}

)

= x

and f
(

Pi = P ′, P̂j ,P−{i,j}

)

= y. By Theorem 1, f is tops only, which implies

that f
(

Pi = P, P̄j ,P−{i,j}

)

= x and f
(

Pi = P ′, P̄j ,P−{i,j}

)

= y. By Lemma 3,

for any type Pj such that xPjy or yPjx, we have that f
(

Pi = P, Pj ,P−{i,j}

)

= x

and f
(

Pi = P ′, Pj ,P−{i,j}

)

= y. Note that this argument holds for any agent j 6= i.

Thus, f (Pi (1) = x,P−i) = x and f (Pi (1) = y,P−i) = y for any P−i.

Step 3) For other adjacent types P̃ , P̃ ′ such that P̃ (1) = z, P̃ (2) = k, we first

claim that f
(

Pi = P̃ ,P−i

)

, f
(

Pi = P̃ ,P−i

)

∈ {z, k}. Similar to Step 1), the una-

nimity requires that f
(

P̃ , P̃ , ..., P̃
)

= z and f
(

P̃ ′, P̃ ′, ..., P̃ ′
)

= k, and there exists

an agent i′ and P−i′ such that f
(

Pi′ = P̃ ,P−i′

)

= z and f
(

Pi′ = P̃ ′,P−i

)

= k.

This agent i′ should be the agent i in step 1). Otherwise, Lemma 3 and SM re-

quire that f
(

Pi′ = P̃ , Pi = P,P−{i′,i}

)

, f
(

Pi′ = P̃ , Pi = P,P−{i′,i}

)

∈ {z, k}, which

leads to a contradiction to Step 2). Additionally, SM and Lemma 3 imply that

f
(

Pi = P̃ , Pj = P̃ or P̃ ′,P−{i,j}

)

, f
(

Pi = P̃ ′, Pj = P̃ or P̃ ′,P−{i,j}

)

∈ {z, k} for any

P−{i,j}, which proves the claim. WLOG, consider f
(

Pi = P̃ , Pj = P̃ ,P−{i,j}

)

= z

and f
(

Pi = P̃ ′, Pj = P̃ ,P−{i,j}

)

= k. From the similar argument in Step 2), it is suf-

ficient to show that f
(

Pi = P̃ , Pj = P̃ ′,P−{i,j}

)

= z and f
(

Pi = P̃ ′, Pj = P̃ ′,P−{i,j}

)

=

k to prove the theorem. If not, SM requires that f
(

Pi = P̃ , Pj = P̃ ′,P−{i,j}

)

= z

and f
(

Pi = P̃ ′, Pj = P̃ ′,P−{i,j}

)

= z. Since the domain satisfies a disagreement

property, consider the type P̆ such that P̆ (1) /∈ {z, k}and kP̆ z and the path from

P̃ ′ to P̆ without {z, k}-restoration. Then, f
(

Pi = P̆ , Pj = P̃ ′,P−{i,j}

)

= z,which

contradicts the above claim. �

Proof of Proposition 1.

We show that for any profile of generic priors {µi}i∈N , f is LOBIC with respect to

{µi}i∈N if and only if it is OBIC with respect to {µi}i∈N .
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It suffices to show that LOBIC implies OBIC. Suppose that f is LOBIC with

respect to {µi}i∈N and fix i ∈ N , Pi, P
′
i ∈ D, a ∈ A. Since D is connected without

restoration, there exists a path (Pi = P 0
i , P

1
i , ..., P

h
i , P

h+1
i = P ′

i ) connecting Pi and

P ′
i without restoration. We show that for any l ∈ {0, ..., h}, if πf

i (B(a, Pi), Pi) ≥

πf
i (B(a, Pi), P

l
i ), then πf

i (B(a, Pi), Pi) ≥ πf
i (B(a, Pi), P

l+1
i ). There are two possible

cases depending on the intersection of A(P l
i , P

l+1
i ) and B(a, Pi).

Case I: SupposeA(P l
i , P

l+1
i )∩B(a, Pi) = ∅ orA(P l

i , P
l+1
i ). Then, πf

i (B(a, Pi), P
l
i ) =

πf
i (B(a, Pi), P

l+1
i ) by SM.

Case II: Suppose A(P l
i , P

l+1
i ) = {x, y} ⊂ A and {x, y} ∩ B(a, Pi) = {x}. Since

the path is without {x, y}-restoration, xP l
i y. Furthermore, since f is LOBIC with

respect to {µi}i∈N , π
f
i (B(x, P l

i ), P
l
i ) ≥ πf

i (B(x, P l
i ), P

l+1
i ) holds, which implies that

πf
i (x, P

l
i ) ≥ πf

i (x, P
l+1
i ). Moreover, πf

i (b, P
l
i ) = πf

i (b, P
l+1
i ) holds for all b ∈ B(a, Pi) \

{x} by SM. Therefore, πf
i (B(a, Pi), P

l
i ) ≥ πf

i (B(a, Pi), P
l+1
i ).

Since πf
i (B(a, Pi), Pi) ≥ πf

i (B(a, Pi), P
1
i ) holds by LOBIC, we have πf

i (B(a, Pi), Pi) ≥

πf
i (B(a, Pi), P

′
i ) by induction.

Proof of Theorem 3. For the equivalence between G-LOBIC and G-OBIC, it suf-

fices to show that G-LOBIC implies G-OBIC. Suppose f is G-LOBIC with respect to

{µi}i∈N . For a pair of preferences P, P
′ ∈ D, consider a path (P = P 0, P 1, ..., P h, P h+1 =

P ′) connecting P and P ′. For an agent i ∈ N and any alternative a ∈ A, πf
i (B(a, P ), P ) ≥

πf
i (B(a, P ), P 1) holds by LOBIC of f with respect to {µi}i∈N . Proving that the fol-

lowing holds with any integer k ∈ {1, ..., h} completes the proof:

πf
i (B(a, P ), P ) ≥ πf

i (B(a, P ), P k) ⇒ πf
i (B(a, P ), P ) ≥ πf

i (B(a, P ), P k+1). (2)

Suppose (2) holds for some l (1 ≤ l ≤ h). If P l+1(1) = P l(1), then πf
i (B(a, P ), P l+1) =

πf
i (B(a, P ), P l) since f is tops-only by Theorem 1. If P l+1(1) 6= P l(1), we need only

consider the case where P l(1) /∈ B(a, P ) and P l+1(1) ∈ B(a, P ) since if otherwise,

πf
i (B(a, P ), P l+1) ≤ πf

i (B(a, P ), P l) by SM of f (as in Proposition 1).

Let x ≡ P l+1(1). Since D is weakly connected without restoration, for any y /∈

B(a, P ), there exists a path (P = P̄ 0, P̄ 1, ..., P̄ h̄, P̄ h̄+1 = P l+1) from P to P l+1 without

{x, y}-restoration. Furthermore, since xP y and xP l+1 y, there does not exist m (1 ≤

m ≤ h̄) such that Pm(1) = y. Then, tops-onlyness and SM of f imply that πf
i (y, P ) =

πf
i (y, P̄

1) = ... = πf
i (y, P̄

h̄) = πf
i (y, P

l+1). Therefore, πf
i (A \ B(a, P ), P l+1) = πf

i (A \
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B(a, P ), P ) and, thus, πf
i (B(a, P ), P l+1) = πf

i (B(a, P ), P ).

For the equivalence between LDSIC and DSIC, it suffices to show that LDSIC

implies DSIC. Suppose, on the contrary, that there exists an agent (for example, agent

1), P1, P
′
1 ∈ D, and P−1 ∈ Dn−1 such that f(P ′

1,P−1)P1 f(P1,P−1). For simplicity,

let x ≡ f(P ′
1,P−1) and y ≡ f(P1,P−1). Then, if xP ′

1 y, every path connecting P1

and P ′
1 is with {x, y}-restoration since tops-onlyness and LDSIC of f imply that for

some preference P̂1 in the path, P̂1(1) = y. This contradicts the assumption that

D is weakly connected without restoration. Therefore, we can assume that y P ′
1 x.

Consider a path (P1 = P 0
1 , P

1
1 , ..., P

h
1 , P

h+1
1 = P ′

1) from P1 to P ′
1 without {x, y}-

restoration, which exists since D is weakly connected without restoration. Then,

there exists l (0 ≤ l ≤ h) such that A(P l
1, P

l+1
1 ) = {x, y}, P l

1(1) = x, f(P l
1,P−1) = y,

and f(P l+1
1 ,P−1) = x. Since xP l

1 y, this contradicts LDSIC of f .

Proof of Lemma 1.

We first argue that if f is G-LOBIC and satisfies weak elementary monotonicity, it

satisfies elementary monotonicity. Suppose not, that is, for an agent (agent 1), some

P−1 ∈ Dn−1 and P1, P
′
1 ∈ D, P ′

1 is a (a, b)-swap of P1 for some a, b ∈ A, f(P1,P−1) 6= a

and f(P ′
1,P−1) = a.

Since f is tops-only by Theorem 1, P1(1) = a, and P1(2) = b. Additionally,

f(P1,P−1) ∈ {a, b} by SM so f(P1,P−1) = b. Now, we modify the preference order-

ings for all j ∈ N such that Pj 6= P1 and Pj 6= P ′
1. Denote the set of such agents by

N ′ ⊂ N .

If 2 /∈ N ′, then, take P ′
2 = P2. Otherwise, take P ′

2 = P1 if aP2 b and P ′
2 = P ′

1

if b P2 a. In both cases, we have f(P1, P
′
2,P−{1,2}) = b and f(P ′

1, P
′
2,P−{1,2}) = a by

Lemma 4. If we repeat the same process for agent 3, 4, ... , and n, then (P1,P
′
−1)

and (P ′
1,P

′
−1) are top-2 profiles but do not satisfy elementary monotonicity. This

contradicts the weak elementary monotonicity of f . Next, Lemma 5 completes the

proof:

Lemma 5 (Mishra 2016). For any domain D ⊆ P , an scf f : D → A is LDSIC if

and only if it is G-LOBIC and satisfies elementary monotonicity.
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