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Abstract

A new nonparametric forecasting using one-sided kernel is proposed via adopting pseudo one-step ahead data. Adopting
pseudo one-step data is inspired from the difference between training error and test error, which motivates us to reduce
test error minimization problem to training error minimization problem. The theoretical basis and the numerical justification
of the new approach are presented.
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1. Introduction

Since local constant regression or kernel regression presented by Nadaraya (1964) and Watson (1964) opened a
new horizon of nonparametric statistics and local polynomial regression by Cleveland and Devlin (1988) widened its
methodological view, it has shown huge development in the applied statistical method. Since it does not any restriction
on a statistical model excluding a researcher’s arbitrary perspective, it can lead to the more flexible approaches.

From the beginning of local regression, its main focus has been fitting a curve to a given data as usually seen in field
of machine learning or signal processing. Thus, there are relatively fewer studies in the field of forecasting than those
on the fitting data problem. However, there are some time-series studies adopting a nonparametic approach, not only
focusing on forecasting, among which the study of Härdle et al. (1997) is circulated one summarizing over the wide range
of statistical use of nonparametric approaches associated with time-series analysis.

Unlike the fitting or interpolation problem, in the forecasting problem, we can not get any data in the future. This gives
a critical implication in terms of using an ordinary kernel, guiding us to use one-sided kernel. Because of the absence
of the data in the future, it is natural to use one-sided kernel for forecasting problem which assigns the highest weight
to the most recent data point like exponential smoothing presented by Brown (1959, p.195). Meanwhile, when using an
ordinary or two-sided kernel, we can obtain a smoothing curve around a certain point by the data on both sides of a given
point, thus an interpolation would work well. However, with one-sided kernel it is hard to avoid a wiggle fitted-curve due
to the absence of the data on the right-hand side or in the future.

One of the previous studies explicitly dealing with forecasting problem purely based on one-sided kernel approach
may be the work of Gijbels et al. (1999), whose contribution is also the investigation on the relation between exponential
smoothing and kernel regression. Li and Heckman (2003) also developed the one-sided kernel approach for extrapolation
in an arbitrarily small region with the simulation and empirical examination.

As for other uses of one-side kernel, Fan et al. (2003) applied various types of one-sided kernels in the fitting problem
and Hansen (1995) used one-sided kernel when heteroscedasticity exists at the threshold of some interval of the domain.

Most distinct and important parameter in the nonparametric estimation is bandwidth parameter usually termed as h.
Numerous studies across the many fields of study are carried out to find the bandwidth for accurately fitting. Of course, a
setting a constant bandwidth over a given domain is the basic approach, and more recently time-adaptive bandwidth or
variable bandwidth scheme are drawing attention; see Brockmann et al. (1993) and Ye et al. (2006).

For the case using one-sided kernel, selecting a bandwidth parameter to a given data is also critical subject. However,
as mentioned, the absence of the future data should be an obstacle as the conventional method. The intuition leads us
to consider some way to obtain the bandwidth optimal to the future. This will be clear from the later context.
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To assess a prediction performance of a statistical method, the prediction error is mainly used for its mathematical
convenience. Also, there are two types of error, training error and test error. Training error E[(yt−m(Xt))

2|T ](T is a set of
pair (xt, yt) for t = 1, ..., T ) typically underestimates test error E[(yT+1 −m(XT+1))

2|T ]; see Friedman et al. (2001, p.38).
Therefore, a model biased only to explain the current events from the data until the present(overfitting), it more easily
fails to predict the future value. For instance, if we take a reciprocal of bandwidth as the model complexity as Hansen
(2009, p.2), we can easily check this difference between training error and test error as the model complexity increases.

Figure 1: Training error vs test error
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However, in many statistical studies, regardless of whether they are of nonparametric or of parametric statistics, the
optimal parameter obtained from a data until the current time is applied to forecast the future value without concerning
this limitation. This inevitable limitation is one of the essential reasons for the difference between training error and test
error. Indeed, applying the bandwidth optimally derived from the data up to T to forecasting a value at T +1, it potentially
implies hT = E(hT+1|FT ), i.e., a martingale process, a quite strong condition to a given data-generating process.

However, if we can reduce test error minimization problem to training error minimization problem, we can expect to
obtain less test error. Considering test error becomes training error after the realization of the next period we have,

E[(yT+1 −m(XT+1))
2|T + 1] ≤ E[(yT+1 −m(XT+1))

2|T ] (1.1)

Accordingly, how to reduce test error minimization problem to training error minimization problem must be the key.
As repeatedly mentioned, the inevitable limitation of a forecasting problem is due to an absence of the data in the

future. This problem is similar to the boundary effect of kernel estimation. To come up with some solution to this problem,
several novel methods presuming pseudo data was proposed(For these boundary corrections, see Karunamuni and
Alberts (2005)).

The remainder of this paper is organized as follows. Section 2 contains the theoretical basis, the test error improvement
of our new approach and its statistical features. Section 3 is devoted to examining our new approach by simulation data.
Section 4 is for empirical examination. Section 5 summarizes and gives some future works.

2. Methodology

The data-generating model is

yt =m(xt) + et

where xt is an equally time spaced predictor and yt is a response variable, and et is an independent and identically
distributed random variable with zero mean and unit variance and is independent of the xt.

For the generalized estimator form, consider the local polynomial estimator of m(xt),

m̂(x;h) = eT1 (X
T
xWxXx)

−1XT
xWxY (2.1)

where,

Xx =

1 x1 − x · · · (x1 − x)p
...

...
. . .

...
1 xT+1 − x · · · (xT+1 − x)p

 , Wx = diag
1≤t≤T

{K
(xt − x

h

)
}, Y = [y1, ..., yT ]

T
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and e1 is the column vector of 1 in 1st position and 0’s in other positions, K(·) is a kernel function and h is a bandwidth
parameter

The estimator (2.1) was first introduced by Stone (1977), this type of formulation has an advantage as it suffices only
to concern the intercept term of m̂ at a given point x.

In this section, we introduce a new one-sided kernel forecasting approach adopting pseudo one-step ahead data, and
verify its improvement in terms of test error and present statistical properties.

2.1. Test error improvement

In forecasting problem, a goal is to minimize test error or prediction error(PE),

PE(m̂) = E[(yT+1 − m̂(xT+1;h))
2|T ] (2.2)

where T is a training set {(xt, yt) : t = 1, ..., T}.
For a mathematical convenience the expected prediction error(EPE) is more useful,

EPE(m) = E((yT+1 − m̂(xT+1;h))
2 (2.3)

rewriting this conditioning on xo,

= ExEy|x((y − m̂(x;h))2|xo) (2.4)

In this study we deal with a discrete stochastic process, then (2.3) is approximated by the average squared residuals(ASR),

ASR(h) = T−1
T∑
i=1

(yt − m̂(xt;h))
2 (2.5)

Denote the minimizing parameter as ĥo,

ĥo = argmin
h≥0

(ASR(h)) (2.6)

Using ĥo, for example, we get a local constant estimated forecast ŷT+1,

ŷT+1 =

T∑
t=1

K(
xt − xT+1

ĥo
)yt

/
K(

xt − xT+1

ĥo
) = m̂(xT+1;h) (2.7)

rewriting PE for the forecasting expression,

PE(m̂) = E(yT+1 − ŷT+1)|T )2 (2.8)

This is the basic scheme of the ordinary forecasting method using one-sided kernel as shown in the previous studies
as Gijbels et al. (1999) and Li and Heckman (2003). However, as mentioned earlier in the introduction section, if we
reduce test error minimization problem to training error minimization problem we can expect the lower test error.

To do this completely, of course, we need to know the actual one-step ahead data in advance, but it is impossible.
Instead, we present a pseudo one-step ahead data ỹT+1 in substitution for yT+1 to obtain a pseudo-training error defined
as below, from which the pseudo-optimal bandwidth for forecasting ỹT+1 is obtained. It is natural that the closer ỹT+1 is
to the actual yT+1, the more optimal bandwidth can be obtained, that is, the closer bandwidth to the bandwidth gained
from minimizing the actual training error up to T + 1.

Accordingly, unless a given variable follows a martingale E(yT+1|T ) = yT , it is better to approximate yT+1 by E(yt|T )
not by yT .

Lemma 2.1. E[‖E(yT+1)− E(yt|T )]‖ ≤ E[‖E(yT+1)− yT ‖]

Proof. See appendix.
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To express training error from using pseudo one-step ahead data, define the pseudo-training error(PTE),

PTE(m̂) = E(yT+1 − m̂(xT+1)|T̃p)2 (2.9)

where T̃p is a pseudo-training set, T ∪ {(xT+1, ỹT+1)) : ỹT+1 = g(T )}.
A real-valued function g(T ) approximates yT+1, of course, how accurately g(T ) to well approximate yT+1 should

determine how smaller test error we can obtain.
Also, a reasonable alternative for g(T ) may be a neighboring mean, 1

/
(T − s+ 1)

∑T
t=s yt rather than a simple mean

E(yT |T ).
Then, remaining problem is how to select a range from s to T in order to well approximate yT+1. Accordingly, we

implement a new nonparametric parameter r denoting this range. Then,

ỹT+1 = g(T ) := r−1
T∑

t=T−r+1

yt (2.10)

With the parameter r the pseudo-ASR(or PTE) including ỹT+1 becomes,

ASR(h, r) =
1

(T + 1)
{
T∑
t=1

(yt − m̂(xt;h))
2 + (ỹT+1(r)− m̂(xT+1;h))

2} (2.11)

getting the expected value of this,

MASR(h, r) = E(ASR(h, r)) = E(yt − m̂(xt;h))
2 + E(ỹT+1(r)− m̂(xT+1;h))

2 (2.12)

Denote the minimizing parameters as ĥp, r̂p

ĥp = argmin
h≥0

(MASR(h, r)), r̂p = argmin
r≥0

(MASR(h, r)) (2.13)

Then (2.8) can be converted into a sort of training error(termed as PTE above), since it uses a value up to T + 1, ỹT+1

being approximated to yT+1 in the pseudo manner. Rewriting (2.2) with this parameter r to compare with ordinal PE,

PE(m̂) =

{
E(yT+1 − m̂(XT+1;h)|T )2 for yt=1,...T , (i.e., ordinal PE)
E(yT+1 − m̂(XT+1;h)|T̃p)2 for yt=1,...T and ỹT+1(r)

(2.14)

Considering that MASR(h, r) has an extra parameter dimension relative to MASR(h) and T ⊂ T̃p, we obtain a theorem
as below

Theorem 2.1. Let PEo = E(yT+1 − m̂(XT+1;h)|T )2 and PEp = E(yT+1 − m̂(XT+1;h)|T̃p)2. Then, PEp ≤ PEo.

Proof. See appendix.

2.2. Statistical properties

For the generalization to the univariate and pth order polynomial regression case, let

Xx =

1 x1 − x · · · (x1 − x)p
...

...
. . .

...
1 xT+1 − x · · · (xT+1 − x)p

 , (2.15)

, and use the higher order extension of kernelK(p) in accordance with the degree of a polynomial regression as suggested
by Lejeune and Sarda (1992),

K(p) = {|Mp(u)|/|Np|}K(u),

where Np is the (p + 1) × (p + 1) matrix whose (i, j) entry is
∫
ui+j−2K(u) du and Mp is the same as Np except for the

first column equal to (1, u, ..., up)T . Then bias and variance are as follows.
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Theorem 2.2. Suppose that assumption 1 and assumption 2(in appendix) hold, that h→ 0, nh→∞ as n→∞ and r ≤
T. Recalling (2.1), where Xx is given by (2.15). Then,

E {m̂(x;h)−m(x)|x1, ..., xT+1} =
{∫

up+1K(p)(u) du
}{mp+1(x)

(p+ 1)!

}
hp+1 + o(hp+1)

and

Var {m̂(x;h)|x1, ..., xT+1} =
{∫

K(p)(u)
2 du

}
{(Th+ h)−1(1 + o(1))} (2.16)

Proof. See appendix.

Note that our minimizing problem includes up to ỹT+1 by implementing a new parameter r, thus, T + 1 is in the
expression of variance rather than T .

To obtain MSE, let

B2 =
{∫

up+1K(p)(u) du
}2{mp+1(x)

(p+ 1)!

}2 (2.17)

and

V =
{∫

K(p)(u)
2 du

}
(2.18)

Since MSE(m̂) = Bias(m̂)
2
+Var(m̂), following corollary as Gijbels et al. (1999) is derived.

Corollary 2.1. Under the assumptions and results of theorem 2.2,

MSE(h) = B2h2p+2 +V(Th+ h)−1 + o(h2p+2 + (Th+ h)−1) (2.19)

Recalling PE = MSE + σ2
e and minimizing (2.12) gives the optimal bandwidth and range,

Theorem 2.3. Let ẽ be an error from ỹ and be independent to ê from m̂(x),

hMASR = hMSE = CMSE(T + 1)−1/(2p+3){1 + o(1)} (2.20)

where CMSE = {Vp/(2p+ 2)N2
p}1/(2p+3)

rMASR = (M(xT )−M(xT−r))m(xT−r)
−1 + o(T−α), α > 0 (2.21)

where M(x) is the intergral of m(x).

Proof. See appendix.

Remark 2.1. The last term of (2.12) in the brace is,

(ỹT+1 − m̂(xT+1;h))
2 = (ỹT+1 − yT+1 + yT+1 − m̂(xT+1;h, r))

2 (2.22)

By ẽ independent to ê, we have (2.20) and (2.21) up to T +1. Also, note that the rate of MSE and bandwidth (T +1)−1 is
faster than (T )−1.
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3. Simulation

For simulation experiment, we use local constant regression and local linear regression for predicting a future value.
Simulation data sets of sample sizes 100 and 300 are generated from three types of functions, and the number of

simulation is 100 for each sample size. In each simulation the last data point is forecasted, and our new forecasting
approach using pseudo one-step ahead data(PSEUDO) is compared to the ordinal forecasting approach with one-sided
kernel(exponential weighted moving average used in Gijbels et al. (1999), abbreviated as EWMA) which uses ĥT from
using data up to T to forecast the future value.

3.1. Local constant regression

Let Y = (y1, ..., yT ) be a stochastic process at equally spaced points (x1, ..., xT ). The goal is to forecast yT+1. A local
constant estimator is

ŷT+1 =

T∑
t=1

Kc(
xt − xT+1

h
)yt

/
Kc(

xt − xT+1

h
) (3.1)

where Kc is one-sided kernel function, denoted for c = e an exponentially weighted kernel and for c = g a Gaussian
kernel,

Kc(u) =

{
exp(u)1u≤0 for c = e

1/
√
2πexp(−u2/2)1u≤0 for c = g

(3.2)

Before we proceed to show simulation results, we note one preliminary fact. Though the case using actual T +1 value
data(ACTUAL) should give the least test error by the optimal bandwidth to forecast T + 1 value, test error of PSEUDO
can be less than test error of the case using actual T +1 value. Since the optimal bandwidth is obtained from minimizing
a sum of squared error in a given data, it does not always guarantee the minimum squared error of the very last forecast.
Consider a function below for instance.

yt = sin(xt/3) + (2/3) log(xt) + et

where et ∼ iid.N(0, 1).

The result of the comparison of test error is shown as below. As seen in the table and figure, test error from PSEUDO
approach is less than test error from ACTUAL. This is the encouraging result in the sense that without actual T +1 value
we can expect a less test error by PSEUDO approach.

Table 1: Test error comparison

T 100

Method EWMA PSEUDO ACTUAL

Test error 1.202 1.173 1.181

∗ Last 50’s points forecasted

Figure 2: Test error less than the actual data
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For simulation experiments, we examine three types of functions, each of which can represent a linear, polynomial
and periodic function respectively.

Model 1 : yt = 3 + 0.05xt + et

Model 2 : yt = 0.02(1.5x
5/4
t − 15x

3/4
t + x

1/2
t ) + et

Model 3 : yt = sin(xt/3) + (2/3) log(xt) + et

6



where et ∼ iid.N(0, 1).

Figure 3: Simulation function
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From table 3 to table 8, the exponentially weighted kernel function is denoted as Exp. and h denotes the optimal
bandwidth obtained from each method. Note that we present a standard deviation(S.D.) of the bandwidth instead of a
standard error which is simply obtained by dividing a standard deviation by the root of simulation times as Li and Heckman
(2003).

As shown in the tables, test error of PSEUDO approach is less than test error of EWMA. Note that optimal bandwidths
are greater than those from EWMA in many cases. It is explained by the fact that the more model complexity(here, 1/h)
increases the test error increases as in the figure 1. In other words, the bandwidth obtained from PSEUDO approach
tends to utilize more observations, to be less biased against the future value, than EWMA. Differences between two
kernels are not evident in terms of test error and the bandwidth.

Table 2: Model 1.

Kernel Exp. Gaussian

T 100 300 100 300
EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO

Test error 1.461 1.438 1.321 1.301 1.237 1.209 1.141 1.114
h 4.568 4.619 4.557 4.609 5.655 5.753 5.607 5.686
S.D. (0.602) (0.642) (0.530) (0.561) (0.829) (0.831) (0.817) (0.827)

Table 3: Model 2.

Kernel Exp. Gaussian

T 100 300 100 300
EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO

Test error 1.124 1.093 1.298 1.264 1.150 1.110 1.170 1.138
h 7.631 7.522 7.646 7.519 8.766 8.684 8.801 15.36
S.D. (2.583) (2.524) (2.314) (2.202) (2.571) (2.459) (2.443) (48.12)

Table 4: Model 3.

Kernel Exp. Gaussian

T 100 300 100 300
EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO

Test error 1.018 0.978 1.335 1.286 1.182 1.142 1.350 1.305
h 1.904 1.919 1.897 1.928 2.094 2.128 2.150 2.238
S.D. (0.522) (0.496) (0.519) (0.512) (0.373) (0.392) (0.391) (0.709)

As a visualization of test error comparison, the integrated sum of squared error(ISE) in the below figure shows the
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difference of test error between PSEUDO and EWMA. The test error from the case using the actual yT+1 is also included.

ISE =

∫
(y − m̂(x))2dx ≈

t∑
i=2

(yi − m̂(xi))
2 for t = 2, ..., T (3.3)

The ISE of PSEUDO is between EWMA and the case using actual data on the left figure. Meanwhile, this is not obvious
in the bandwidth plot except that the bandwidth from PSEUDO is between EWMA and the case using actual data in
several intervals. As for the range parameter, extreme values seem to be dominant, that is, the range of a whole sample
or the range only referring some nearest points.

Figure 4: ISE, bandwidth comparison and range
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3.2. Local linear regression

Applying (3.1) to a local linear estimator, the natural extension as in Gijbels et al. (1999) is,

ŷt+1 = eT1 {X(xT+1)
TWh(x)X(xT+1)}−1X(xT+1)

TWh(x)YT (3.4)

where

X(x) =

1 x1 − x
...

...
1 xT − x

 , Wh(x) = diag
1≤t≤T

{K
(Xt − x

h

)
} (3.5)

and e1 is the column vector of 1 in 1st position and 0’s in other positions and K(·) is a kernel function.
The below tables show that the results of PSEUDO approach outperform those from EWMA again. Likewise, the

bandwidths are mainly greater in the case of PSEUDO approach than the bandwidths in the case of EWMA. Two types of
the kernel do not show significantly different results as the previous local constant regression case. We can also find that
the test error difference between EWMA and PSEUDO approach is mainly greater in the case of local linear regression
than in the case of local constant regression, which may be relevant to the shortcoming known as boundary effect of
local constant regression;see Hastie and Loader (1993).

Table 5: Model 1.

Kernel Exp. Gaussian

T 100 300 100 300
EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO

Test error 0.917 0.901 1.024 0.999 0.975 0.955 0.935 0.885
h 695.2 679.0 671.4 677.5 682.9 704.0 642.5 646.6
S.D. (432.3) (427.9) (432.9) (434.0) (448.1) (435.8) (463.8) (454.0)
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Table 6: Model 2.

Kernel Exp. Gaussian

T 100 300 100 300
EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO

Test error 1.150 1.127 1.070 1.047 0.983 0.958 1.098 1.065
h 26.90 24.30 362.6 356.8 20.35 20.47 20.82 22.48
S.D. (98.46) (69.06) (219.5) (216.6) (5.073) (4.916) (6.534) (14.96)

Table 7: Model 3.

Kernel Exp. Gaussian

T 100 300 100 300
EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO EWMA PSEUDO

Test error 1.963 1.841 1.598 1.479 1.237 1.209 1.141 1.114
h 7.174 7.721 6.558 7.178 13.34 21.71 16.22 24.91
S.D. (8.855) (10.16) (6.515) (7.039) (10.47) (5.745) (32.16) (28.52)

The figures below describe ISE, bandwidths and range comparison in the local linear case. The result on ISE is more
distinct than the previous result from the local constant case, which supports that local polynomial regression usually
outperforms local constant regression as claimed by Fan and Gijbels (1996).

Figure 5: ISE, bandwidth comparison and range
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4. Empirical result

For the empirical study, we examine three types of data, exchange rate, bond price and commodity future price to
embrace different types of economic data, and each data is standardized.

4.1. Exchange rate(EUR/USD)

Firstly, exchange rate(EUR/USD) of 50 days(from Jun.15.2016 to Aug.31.2016) is used.
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Figure 6: Exchange rate(EUR/USD)
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Total 20 exchange rates(from 31st to 50th) are forecasted and used to obtain test error. The test error comparison is
presented in the table including the result of the case using an actual one-step ahead value(ACTUAL). As shown on the
left of the table, we could see that test error of ACTUAL is smallest, the second smallest PSEUDO, being consistent with
the results from simulations. However, on the right side of the table shows that test error of PSEUDO can be smallest as
mentioned earlier.

Table 8: Test error

Local constant Local linear

Method EWMA PSEUDO ACTUAL* EWMA PSEUDO ACTUAL*

Test error 0.190 0.186 0.183 0.222 0.204 0.205

*ACTUAL: Using an actual data.

The below figures describe ISE, bandwidth, and range across the three methods, and they come from the local
constant case, The plot of ISE is consistent with the simulation result. Also, the plot of bandwidths shows that the
bandwidths from PSEUDO approach are mainly greater than other bandwidths as before. Note that the plot of EWMA
is lagged behind ACTUAL exactly by one step. The range plot shows that the extreme values are dominant across the
interval, implying pseudo one-step data referring points in the whole sample, or nearest points. Also, it shows a slightly
increasing trend as the number of data increases.

Figure 7: ISE, bandwidth and range

(a) ISE

41 42 43 44 45 46 47 48 49 50
2

2.5

3

3.5

4

IS
E

T

 

 

EWMA
PSEUDO
ACTUAL

(b) Bandwidth
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(c) Range

30 35 40 45 50
0

10

20

30

40

50

R
a

n
g

e

T

4.2. U.S. 30 Year Treasury Bond

Secondly, U.S. 30 Year Treasury Bond price of 50 days(from Jun.15.2016 to Aug.31.2016) is used as empirical data.
As seen in the below figure, the price of the bond shows a bit less wiggle shape than the case of the exchange rate.
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Figure 8: U.S. 30 Year Treasury Bond
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Total 20 bond prices(from 31st to 50th) are forecasted and used for test error. Unlike the previous result, the results
of test error across three methods are almost same in the local constant case, which may be relevant to the less wiggle
feature of this data.(we could examine by a simulation that the noise-free model gives the same result in the local constant
case). In the local linear case, test error from PSEUDO is smallest as before, of course, this is not a general case.

Table 9: Test error

Local constant Local linear

Method EWMA PSEUDO ACTUAL* EWMA PSEUDO ACTUAL*

Test error 0.107 0.107 0.107 0.161 0.149 0.153

*ACTUAL: Using an actual data.

The below figure describes ISE, bandwidth, and range. The figures come from the local linear case, ISE is smallest
in PSEUDO. As for the result of bandwidth, the bandwidth from PSEUDO is more variable and greater than others.

Figure 9: ISE, bandwidth and range
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4.3. Crude Oil Futures

Lastly, crude oil future price of 50 days(from Jun.15.2016 to Aug.31.2016) is used. The forecasting interval is from
31st to 50th. The data shows not as much wiggle as the previous examples, however including a sharp decrease just
before the 40th data.
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Figure 10: Crude Oil Futures
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The test error comparison is presented in the table. In both local constant and local linear cases, the results are
similar as previous ones.

Table 10: Test error

Local constant Local linear

Method EWMA PSEUDO ACTUAL* EWMA PSEUDO ACTUAL*

Test error 0.083 0.081 0.080 0.072 0.051 0.065

*ACTUAL: Using an actual data.

The figures come from the local linear case, ISE is smallest in PSEUDO. Bandwidth shows a more variable shape
than the others, and the range plot are similar as before.

Figure 11: ISE, bandwidth and range
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5. Concluding remarks

Motivated by the difference between training error and test error, our study presents a new nonparametric forecasting
approach adopting pseudo one-step ahead data in the minimization of sum of squared error. Its theoretical basis and the
justification from simulation data and empirical data are provided. From the simulation and empirical results, using local
polynomial regression seems to give a better forecast than using local constant regression.

Future works are as follows. Considering the correlated environment as Gijbels et al. (1999) and Hart (1991) in
which the parameter r may be differently obtained from the effect of autoregressive error terms and the heteroscedastic
environment as Muller and Stadtmuller (1987) and Ruppert and Wand (1994), to expand our new method’s applicability
to these environments should be followed.

Secondly, expanding the domain space from the discrete space to the continuous space can be worthy of work, similar
to Li and Heckman (2003). Most of the cases, time-series data is a discrete stochastic process, however, if this work
would be made it can be also applicable to the spatial data analysis based on Kolmogorov existence theorem.
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Lastly, it will be an interesting try to apply our ’pseudo data’ scheme to parametric statistical analysis. That is, when
forecasting a future value based on a parametric model, an optimization including pseudo one-step ahead data may be
able to give a better performance.
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A. Appendix

A.1. Proof of Lemma 2.1.

PROOF. Rewrite each term as a squared form. Then, RHS is

E[m(xT+1)
2 + µ2

T − 2m(xT+1)µT )]

and LHS is

E[m(xT+1)
2 +m(xT )

2 + e2T − 2m(xT+1)m(xT )− 2m(xT+1)eT + 2m(xT )eT ]

cancelling common terms

0 ≤ σ2

A.2. Proof of Theorem 2.1.

PROOF. Denoting filtration up to yT by FT and up to ỹT+1 by Fp. Then,

FT ⊆ Fp and PEo is measurable-Fp.

It is also obvious that

inf{PEp
h≥0,r≥0

} ≤ inf{PEp
h≥0

}.

and recalling that training error is less than test error

inf{PEp
h≥0

} ≤ inf{PEo
h≥0

}

A.2. Proof of Theorem 2.2.

PROOF. The assumption and proof come from the theorem 4.1 of Ruppert and Wand (1994). Here, we sketch the proof
with several notices.

Assumption 1. The kernel function K is compactly supported, and its second moment
∫
uTuK(u) du = µ2 6= 0 and all

odd-order moments of K vanish.

Assumption 2. The point x is in supp(f), f(x) is density of x. At x, f(x) is continuously differentiable and all fourth-order
derivatives of m(x) are continuous.

Using (2.1) and expanding Y to (p+ 2)th order of Taylor series gives

E{m̂(x;h)−m(x)|x1, ..., xT+1} =eT1 (n−1XT
xWxXx)

−1(Sx +Rx). (A.1)

where

Sx = n−1XT
xWx ×

{
mp+1(x)

(p+ 1)!

 (X1 − x)p+1

...
(XT+1 − x)p+1

+
mp+2(x)

(p+ 2)!

 (X1 − x)p+2

...
(XT+1 − x)p+2

} (A.2)

which is (p+ 2)th order Taylor expansion, and Rx is a vector of Taylor remainder terms. Let A = diag(1, h, ..., hp), Qp be
the (p+ 1)× (p+ 1) matrix whose (i, j) entry is µi+j−1 and 1 is a matrix whose every entry is one. Then, we obtain

n−1XT
xWxXx =A{f(x)Np + hf ′(x)Qp}A+ o(hA1A) (A.3)

The second term in the curly bracket, which comes from the Taylor expansion of n−1XT
xWxXx is included for the case

when p is even so that the some elements of the first term vanish.

15



And for k = 1, ..., according to standard results from kernel density estimation being used for (A.2),

A−1n−1XT
xWx

 (X1 − x)k
...

(XT+1 − x)k

 =

{
hkf(x)


µk
µk+1

...
µk+p

+ hk+1f ′(x)


µk+1

µk+2

...
µk+p+1

+ o(hk+1)

}
(A.4)

Substituting (A.2) with (A.4) and (A.3) into (1), and after rearranging terms considering that some moments in Np and Qp
vanish, we have

E{m̂(x;h)−m(x)|x1, ..., xT+1} =
{ p+1∑
j=1

(N−1p )1pµp+2+j

}{
mp+1(x)f ′(x)

f(x)(p+ 1)!
+
mp+2(x)

(p+ 2)!

}
hp+2 + o(hp+2) (A.5)

In particular, since odd-order kernel moments do not vanish in the one-sided kernel we can omit the last term in the
second curly bracket and it suffices to consider just p+ 1 instead p+ 2 as Gijbels et al. (1999).

For the conditional variance in the theorem, first note that

Var{m̂(x;h)|x1, ..., xT+1} = eT1 (X
T
xWxXx)

−1XT
xWxVWxXx(X

T
xWxXx)

−1e1 (A.6)

where V = σ2
eIT+1.

Let Tp be the (p+ 1)× (p+ 1) matrix having its (i, j) entry equal to
∫
ui+j−2K(u) du. Then,

n−1XT
xW

2
xXx = h−1Af(x)TpA+ o(h−1A1A). (A.7)

Combining (A.3) and (A.7) into (A.6) we have

Var{m̂(x;h)|x1, ..., xT+1} = (eT1N
−1
p TpN

−1
p e1)(Th+ h)−1(1 + o(1)) (A.8)

The first factor on the right hand side of (A.5) and (A.8) is termed as the kernel dependent constants and proven as
equivalent to

∫
up+2K(p)(u) du and

∫
K(p)(u)

2 du respectively in Ruppert and Wand (1994).
Since our model assumes homoscedasticity like the model of Li and Heckman (2003), the heteroscedastic function in

Ruppert and Wand (1994) does not show in the variance expression.

A.2. Proof of Theorem 2.3.

PROOF. Assuming ẽ independent to ê as in Remark 2.1., obtaining the optimal bandwidth is straightforward.

To obtain optimal r, let xT be a continuous variable denoted as t for a mathematical convenience, then the last term of
(2.12) becomes

E[r−1
∫ T

T−r
yt dt−m̂T+δ]

2 = E[r−1
∫ T

T−r
mt + et dt−m̂T+δ]

2, δ > 0 (A.9)

Derivative with respect to r is

2

∫
(r−1

∫ T

T−r
mt + et dt−m̂T+δ)

∂

∂r
(r−1

∫ T

T−r
mt + et dt−m̂T+δ)f(e) de (A.10)

Suppose that mt and et are integrable as Mt and Et with respect to t,

2

∫
(r−1

∫ T

T−r
mt + et dt−m̂T+δ)

∂

∂r
{r−1(MT −MT−r + ET − ET−r)}f(e) de (A.11)
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Rearranging and collecting like terms gives,

2

∫
M

(1)
T−r + E

(1)
T−r − r

−1(MT −MT−r + ET − ET−r)f(e) de (A.12)

=2

∫
M

(1)
T−r − r

−1(MT −MT−r)f(e) de+o(T
−α), α > 0 (A.13)

=mT−r − r−1(MT −MT−r) + o(T−α) = 0 (A.14)
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