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Abstract 

We analyze a spatial voting contest without the “one person, one vote” restriction. Players exert 
continuous influence effort and incurs cost accordingly. They can be heterogeneous in terms 
of position, disutility function, and cost function. In equilibrium, two groups endogenously 
emerge: players in one group try to implement more leftist policy, while those in the other 
group more rightist one. Since the larger group suffers more severe free-riding problem, the 
equilibrium policy does not converge to the center if the larger group does not have a cost 
advantage. We demonstrate how the location of the center (i.e., the steady-state point) depends 
the convexities of the utility and cost functions. We extend the model to a dynamic setting. 
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1. Introduction  

In many a times a policy in the government, organizations, committees etc. is chosen and 

implemented through (majoritarian) voting. In general, there exists a status quo policy and the 

players involved have their own preferences regarding what a new policy should be while 

voting on the policy change. This generic structure can be implemented in other collective 

decision making processes such as election, lobbying etc. and has been applied, bot 

theoretically and empirically, numerous times in Economics and Political Science.  

When the policy is considered in a single dimension, this structure provides the famous ‘median 

voter’ result (Black, 1948; Downs, 1957). In specific, the players are located in the linear policy 

space according to their preferred policy point. The players suffer with disutility if the policy 

is far from their preferred point and cast their single possible vote. Under this structure, it is 

shown in various studies that the preference of the median voter is reflected in the final policy. 

Note, however, that very many real life situations go beyond such simple structure even while 

considering a single dimensional policy space. First, often a committee or the members of 

public essentially engage in contests by exerting costly efforts to influence policies. Here the 

one person one vote rule is not applicable. For example, in the case of rent seeking, electoral 

expenditures, lobbying in a committee etc., the influence procedure is rather general and 

involve associated costs. Moreover, to implement one’s favorable policy or to influence the 

status quo, players often form coalitions endogenously with other ‘like-minded’ players. 

Finally, some members of the coalition may free-ride on other members while influencing for 

such favorable policies.  

In this study we introduce a game theoretic model to combine the above discussed features in 

both static and dynamic settings and derive the resulting equilibria. The model turns out, as we 

show later, to be a combination of a spatial voting model and a collective contest model. In this 

setting the players have their optimal preference over a line with a given disutility function: 

further the implemented policy, higher is the dissatisfaction. The initial status quo policy is 

given exogenously (from history), but the players can spend efforts to influence the policy. The 

efforts are costly and follows a known cost function. If the players from the left (right) side of 

the initial policy collectively exert more effort, then the final policy is more likely to be 

implemented in the left (right) side of the initial policy. Hence, in doing so, players form 
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coalitions endogenously and are able to free-ride on other players in such a coalition. Below, 

in Figure 1, we provide an illustrative example of this situation.  

Figure 1. Illustrative example 

 

 

 

 

 
Suppose the line above illustrates the policy space. We provide two examples: first, the policy 

can be the policy on gun-control in the USA. A player with the extreme preference in the right 

(grey circle) here would be the NRA, who would like to promote and encourage rifle shooting. 

Another player with the extreme preference in the left (red circle) here would be the Brady 

campaign who would prefer for gun control and stop gun violence. Somewhere in the middle 

(say, the yellow circle) would be someone who is pro-gun ownership, but prefer stricter 

background checks. Likewise, for the case of Brexit in the UK, the grey, red, and yellow circles 

will depict the ‘hard Brexiters’, the ‘In campaigners, and the soft immigrations sceptics. Of 

course, there are many other players (blue, green, orange etc.) who hold their own preferences 

in both the examples.  

Suppose further, that the black arrow specifies the status quo. Then, the yellow player would 

like the new policy to be moved towards left. Note a few interesting aspects that differentiates 

this structure with the standard voting models. First, although yellow wants the policy to move 

towards left, s/he does not want it to move too left. Second, implicitly yellow makes an alliance 

with the green, orange, and red players, since those players also want to move he policy towards 

left. Third, if the green, orange, and red players exert costly effort to move the policy, then it 

is possible for yellow to free-ride on their effort and refrain from exerting costly effort.  

The players can be heterogeneous in terms of three aspects: their position, their effort cost 

function, and their disutility function. We use a very specific logit-type (Tullock, 1980) 

adjustment function for the policy change. We find that in equilibrium, two groups 

endogenously emerge: players in one group try to implement more leftist policy, while those 

in the other group more rightist one. In general, the equilibrium policy converges to the ‘center’ 

if the larger of the groups has a cost advantage. However, it may not converge if there is no 

Brady campaign, or 
‘In’ campaigners 

NRA, or 
Hard Brexiters 

Status quo Background checker, or 
Immigration sceptic 
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such an advantage because the larger group suffers with a more severe free-rider problem. The 

‘center’, however, does not have to be the median; but it can be other measures of centrality.  

We define steady state equilibrium as the situation in which the status quo and the implemented 

policy coincide. We find that if both the disutility of non-optimal policy and the effort cost 

function are linear, any policy can be a steady state policy. This is the case where there is no 

cost (dis)advantage. However, if the disutility of non-optimal policy is linear and the cost 

function is convex, a steady state policy is the optimal policy for a median player. On the 

contrary, if the disutility of non-optimal policy is concave (that is, the distance measure is 

convex) and the cost function is linear, the steady state policy is the mean of the two extreme 

players' optimal policies. There is no cost advantage in this case, but everyone but the two 

extreme players free-ride in equilibrium. Finally, if the distance measure and the cost function 

are equally convex, the steady-state policy is the (weighted) average of all players’ ideal points. 

We then extend these analyses to a three player dynamic setting. In an infinite horizon model, 

there exists an equilibrium in which the policy converges again to the median player. Players 

expend more effort in each period as they become more patient (or forward-looking), but the 

convergence speed does not depend on the discount factor.  

Our results contribute to the spatial voting literature and show that although a central measure 

turns out to be the optimal policy, it does not necessarily have to be the median. Krasa and 

Polborn (2010) in a very different setting consider competition between heterogeneous 

candidates on two policy areas. They also find a central tendency that is different from standard 

median voter. We contribute further in the same line. It also introduces the idea of contest in 

the spatial voting literature. Downs (1957) and the following studies (e.g. Palfrey and 

Rosenthal, 1983; Becker, 1983; Sengupta and Sengupta, 2008 etc.) assume that each player has 

the same influence (one vote). In the current study we allow each individual to spend more or 

less resources, thus the influence of an individual is endogenously determined.1 This also 

supports and complements the results in Hanson and Stuart (1984) found in a different set up. 

In a generalization, Baron (1996) implements a collective goods problem through dynamic 

voting. Our approach is very close to this analysis, but we show a broader set of results.  

We also contribute to the contest literature (Konrad, 2009) – especially in the areas of collective 

contests and endogenous coalition formation. In the collective (group) contests, players are 

                                                           
1 Lalley and Weyl (2018) propose quadratic voting as a method for binary collective decision making, our model 
does not assume that two alternatives are exogenously given.  
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assumed to be in pre-specified groups in which the prize value is given, and there is 

exogenously given group production function (impact function). In our structure, we consider 

an additive impact function similar to that of Katz et al. (1990) but endogenize both the group 

size and the prize value. Individual contest literature does not consider a specific dimension in 

policy implementation, whereas coalition formation rules are often arbitrarily imposed (see, 

for example the references in Balart et al., 2017). We consider the linear policy dimension and 

contribute to the thin literature on contests with networks (Franke and Öztürk, 2015).2 For 

examples, the Tug-of-war games are two-player games in which the policy moves sequentially 

until it reaches a pre-specified point (Konrad and Kovenock, 2005, 2009; Agastya and McAfee, 

2006). Our model is a differentiated version in the sense that we consider multiple players and 

an endogenous final point. Duggan and Gao (2020) analyse a multi-dimensional tug-of-war 

model in which risk averseness result in Rawlsian equilibrium and risk loving equilibrium is 

the mean of players’ ideal points. Compared to them we implement single dimension policy 

and risk neutrality, but consider groups.  

Epstein and Nitzan (2004) introduce a two stage game. In the first stage the “groups decide 

which policy to lobby for and then, in a second stage, engage in a contest over the proposed 

policies”. Hence, they endogenize the ‘target’ but not the prize. We extend that part of the study 

by also endogenizing the groups, but the preference points in our model remains fixed. 

Similarly, Baik (2017) considers a multi-players contest on a prize that is public good for some 

and public bad for some others, but only the prize spread matters in equilibrium that involves 

free riding. In contrast to this model, we endogenize the prize as well as the group formation.  

In summary, we believe that the current study ties the spatial voting model and the collective 

contests model and contributes to both parts of the literature. In the continuation we first 

introduce the model in Section 2. Section 3 and Section 4 reports the results from the static and 

the dynamic analyses, respectively. Section 5 concludes.  

2.  Model 

Consider 𝑁 ≥ 2 players who spend effort to implement an individually more desirable policy.  

The policy space is bounded, continuous and one-dimensional. Such a space can be represented 

as a unit interval [0,1]. Let 𝑥  be the effort exerted by player 𝑖, 𝑑 ∈ {−1,1} be the direction 

toward which the effort is put, and 𝑦 ∈ [0,1] be the ideal point of player 𝑖. For expositional 

                                                           
2 This is different from Spatial contests (Konrad, 2000), in which firms contest with each other for locations in a 
differentiated market.  
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simplicity, we assume that all players are distinct in terms of their ideal points, but the distance 

between them can be arbitrary.3 More specifically and without loss of generality, we let 0 =

𝑦 < 𝑦 < ⋯ < 𝑦 = 1. Player 𝑖 decides on the pair (𝑥 , 𝑑 ) to maximize: 

𝑢 (𝛿, 𝑥 ) = −𝛼 |𝛿 − 𝑦 | − 𝑐 (𝑥 )      (1) 

where 𝛼  is a parameter capturing the sensitivity of the player to a change in policy, and the 

cost of effort 𝑐 (𝑥 ) is 𝜇 (𝑥 /𝛾) where 𝛾 ≥ 1. We further assume the distance measure ||. || to 

have the same functional form as the cost function, i.e., |𝛿 − 𝑦 | = (|𝛿 − 𝑦 |) /𝜆 where 𝜆 ≥

1.4 Also, we mostly restrict our focus on symmetric players, i.e., for all 𝑖 and 𝑗, 𝛼 = 𝛼 = 𝛼 

and 𝜇 = 𝜇 = 1. The consequences of relaxing this symmetry assumption are discussed at the 

end of Subsection 4.2.  

The implemented policy is determined according to an ‘adjustment rule’, which is defined as 

follows. Let 𝒙 and 𝒅 denote the vectors of effort and directions, respectively. Then, given 

(𝒙, 𝒅), the implemented policy is: 

𝛿(𝒙, 𝒅) = 𝑆 + 𝑝(𝒙, 𝒅) 

where 𝑆 is the status quo or the default policy, and 𝑝(𝒙, 𝒅) is the adjustment. In words, the 

newly implemented policy is the status quo policy adjusted by the aggregated efforts. Our 

model allows 𝑆 to be different from previously implemented policy. But when discussing the 

dynamics and steady state equilibrium, we assume that the status quo at period 𝑡  is the 

implemented policy at period 𝑡 − 1.   

The adjustment function 𝑝(𝒙, 𝒅) ∈ [−1/2, 1/2] has the following form: 

𝑝(𝒙, 𝒅) = 𝑝 𝑥
∈

, 𝑥
∈

 

where 𝐿 denotes the set of players who push the policy to the left, i.e., 𝐿 = {𝑗|𝑑 = −1} and 

similarly, 𝑅 = {𝑗|𝑑 = 1}, and has the following properties: 

i. 𝑠𝑔𝑛[𝜕𝑝(𝒙, 𝒅)/𝜕𝑥 ] = 𝑠𝑔𝑛[𝑑 ] and 𝑠𝑔𝑛[𝜕 𝑝(𝒙, 𝒅)/𝜕𝑥 ] = −𝑠𝑔𝑛[𝑑 ].   

ii. If ∑ 𝑑 𝑥 = 0, then 𝑝(𝒙, 𝒅) = 0. 

                                                           
3 If two or more players share the same ideal point (i.e., 𝑦 = 𝑦 for some 𝑖 ≠ 𝑗), there may exist multiple equilibria 
in which those players free-ride on each other's effort in various ways. We ignore these cases because they would 
make the exposition significantly messier without adding any interesting insights. 
4 Provide reference for such function used in the literature and why that is fine to have the same function for both.  
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iii. If ∑ 𝑑 𝑥 = 0, then
(𝒙,𝒅)

= −𝜕𝑝(𝒙, 𝒅)/𝜕𝑥  for 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅. 

The first is the usual assumption that the function is increasing and concave in effort. It looks 

different from the usual one because the objective of the players in 𝐿 is to reduce 𝑝(𝒙, 𝒅). The 

second assumption states that if the amount of efforts put forward the opposite directions are 

identical (i.e., ∑ 𝑥∈ =  ∑ 𝑥∈ )), then the default policy is implemented. It also implies that 

if nobody exerts a positive effort, then 𝛿(𝒙, 𝒅) = S. The last assumption is that 𝑝(𝒙, 𝒅) is 

symmetric. 5  More specifically, at a symmetric point (i.e., when ∑ 𝑥∈ =  ∑ 𝑥∈ ), the 

marginal change of the policy is also symmetric. Our leading example for 𝑝(𝒙, 𝒅) is a ‘Contest 

Success Function (CSF)’ in the spirit of Tullock (1980): 

𝑝(𝒙, 𝒅) =

∑

∑
  𝑖𝑓 ∑ 𝑥 > 0

0   Otherwise

      (2). 

From this, it is clear that out model is a collective rent-seeking game (similar to Katz et al., 

1990), which is played on a single-dimensional policy space. Another example is a linear 

function: 𝑝(𝒙, 𝒅) = 𝜂 ∑ 𝑑 𝑥  for some positive but small 𝜂.  

The ideal points of all players {𝑦 }  and the status quo policy 𝑆 are common knowledge. All 

players decide the effort level and the direction {𝑥 , 𝑑 }  independently and simultaneously. 

An equilibrium is vectors of efforts and directions (𝒙∗, 𝒅∗) such that for all 𝑖, given (𝒙 𝒊
∗ , 𝒅 𝒊

∗ ) 

and 𝑆, player 𝑖 maximizes (1).  

 

3.  Static Analysis  

We  first characterize the condition under which given 𝒙, nobody has an incentive to change 

the direction of effort, then we explore how the equilibrium efforts determine the implemented 

policy. In Section 3.2, steady-state equilibria in which the status quo and the implemented 

policy coincide are characterized. Note that, if 𝛾 = 𝜆 = 1, i.e., both the distance and the effort 

cost functions are linear, then any policy 𝛿 ∈ [0,1]  can be a steady-state equilibrium. In 

contrast, if the cost function is convex while the distance function is linear, i.e., 𝛾 > 1 and 𝜆 =

1, a steady state equilibrium policy must be in [𝑦 , 𝑦 ] where 𝑦  is the ideal point of the 

                                                           
5 Note that the last assumption does not directly imply that the marginal benefit t of exerting additional effort 
would be the same for those players, because in principle, both 𝛼  and |𝛿 − 𝑦 | can influence the marginal utility 
of having 𝛿 closer to 𝑦 . 
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left median player and 𝑦  is the idea point of the right median player. Of course, when 𝑁 is 

an odd number then 𝑦 = 𝑦 = 𝑦 . If 𝛾 = 1 and 𝜆 > 1, the mean of the two extreme 

players’ ideal points, ½. Emerges as the steady state point. Finally, if 𝛾 > 1 and 𝜆 > 1, then 

mean of all players’ ideal points is the steady state. 

3.1 Group formation  

In this subsection, we consider how groups are formed, that is, given the vector of efforts 𝒙, 

how that of the directions 𝒅 is determined. The following lemma describes what the groups 

𝐿 = {𝑗|𝑑 = −1} and 𝑅 = {𝑗|𝑑 = 1} look like in equilibrium.  

Lemma 1. In equilibrium, there exists a threshold (or grouping rule) 𝜃 ∈ [0,1] such that the 

players whose ideal policy is in the left of 𝜃 are in group 𝐿, and those who are in the right are 

in group 𝑅. The player whose ideal policy is 𝜃, if exists, can be in either group. 

Proof: Obvious. 

We define 𝐿(𝜃) as the set of players who are at the left side of 𝜃, i.e., 𝐿(𝜃) = {𝑖|𝑦 < 𝜃}, and 

𝑅(𝜃) as 𝑅(𝜃) = {𝑖|𝑦 ≥ 𝜃}. Since now we can infer the vector of directions 𝒅 from (𝒚, 𝜃), 

below we discuss how to determine an equilibrium threshold 𝜃∗  instead of the vector of 

directions 𝒅∗. 

For the sake of concreteness of the discussion, let 𝑝(𝒙, 𝒅) be the Tullock-type CSF defined in 

(2) for a moment.6 Note that since 𝑦 = 0 and 𝑦 = 1, ∑ 𝑥  is never zero in equilibrium. 

Therefore, the implemented policy as a function of 𝜃 is given by: 

𝛿(𝜃; 𝒙, 𝒚, 𝑆) = 𝑆 +
∑ 𝑥∈ ( ) − ∑ 𝑥∈ ( )

2 ∑ 𝑥∈ ( )∪ ( )
 

  = 𝑆 − +
∑ ∈ ( )

∑ ∈ ( )∪ ( )
    (3). 

Note that given 𝒙, 𝒚 and 𝑆, the implemented policy 𝛿(𝜃) is a decreasing step function: as 𝜃 

moves from 0 to 1, more and more players move from 𝑅(𝜃) to 𝐿(𝜃), so 𝛿(𝜃) decreases step 

by step. 

                                                           
6 Except for the ones presented in Section 4.3, our results do not require any specific functional form assumption 
on 𝑝(𝒙, 𝒅). 
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If the threshold 𝜃 is too small, too many players are on the right side of it, so the implemented 

policy ends up being biased toward the right. In such a case, a player in 𝑅(𝜃) but located close 

to 𝜃 has an incentive to change the direction of the effort from the right (𝑑 = 1) to the left 

(𝑑 = −1). If too many players are in 𝐿(𝜃), similarly, the implemented policy is biased towards 

the left, and a player located close to 𝜃 is willing to change the sides, i.e., 𝜃 must be moving 

towards the left. In equilibrium, the threshold must be set in a way such that nobody gains by 

changing her direction. The following lemma states that an equilibrium policy  𝛿(𝒙∗, 𝒅∗;  𝑆) is 

such a threshold. 

Lemma 2. Given a vector of equilibrium effort 𝒙∗, the corresponding equilibrium groups are 

𝐿(𝜃∗) and 𝑅(𝜃∗)  where 𝜃∗ satisfies: 

𝜃∗ = 𝛿(𝜃∗; 𝒙∗, 𝒚, 𝑆).      (4) 

Proof: Consider an arbitrary grouping rule 𝜃 ∈ (0,1) according to which players on the left 

of 𝜃  are in 𝐿, and those on the right of or on 𝜃  are in 𝑅. Suppose that 𝛿(𝜃 ; 𝒙∗, 𝒚) > 𝜃 , and 

that when the threshold moves from 𝜃 < 𝑦  to 𝜃 > 𝑦 , 𝛿(𝜃 ; 𝒙∗, 𝒚) is still greater than 𝜃 . 

Then, the change from 𝜃  to 𝜃  (equivalently, from 𝑑 = 1 to 𝑑 = −1) improves the utility of 

player 𝑖  because by the change, ||𝛿 − 𝑦 || becomes smaller. This means that 𝜃  is not an 

equilibrium threshold, and furthermore, any 𝜃 < 𝜃  is not an equilibrium threshold either. We 

can say the same thing about the case in which 𝜃  is greater than 𝛿, and moving 𝜃  toward the 

left does not change the rank of the two. Because in equilibrium, nobody has an incentive to 

change the direction of the effort, the equilibrium dividing rule 𝜃 must satisfy 

lim
→

𝛿(𝜃; 𝒙∗, 𝒚, 𝑆) ≤ 𝜃 ≤ lim
→

𝛿(𝜃; 𝒙∗, 𝒚, 𝑆), 

and the equilibrium implemented policy is either the right limit or the left limit. 

To prove the lemma by contradiction, suppose that the above inequalities are strict, which 

implies that there exists a point 𝑦 = 𝜃 such that when threshold 𝜃 is on the left of 𝑦 , 𝜃 <

𝛿(𝜃; 𝒙∗, 𝒚, 𝑆) , but 𝜃 > 𝛿(𝜃; 𝒙∗, 𝒚, 𝑆)  when 𝜃  is on the right of 𝑦 . Graphically, 𝑦  is the 

threshold in which 𝛿(𝜃) jumps from the above of 45 degree line to the below of it. In this case, 

player 𝑗 can pull the implemented policy 𝛿(𝑥 , 𝒙 𝒋
∗ ; 𝒚) toward her ideal policy 𝑦  by reducing 

her effort 𝑥 . This means 𝒙∗ was not a vector of equilibrium efforts in the first place, which 

contradicts the assumption. Therefore, in equilibrium at least one of the inequalities must hold 
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as equality, and the equilibrium policy must be the dividing rule which satisfies 𝜃∗ =

𝛿(𝜃∗; 𝒙∗, 𝒚, 𝑆).   ∎ 

A few remarks follow immediately. First, the equilibrium grouping rule 𝜃∗ defined by Coate 

(2004) is unique if exists, because 𝛿(𝜃) is a decreasing step function. This, of course, does not 

mean that the equilibrium is unique. Second, even if the equilibrium groups are unique, there 

can be infinitely many thresholds 𝜃  that define the same groups. Third, it is 𝛿∗  not 𝑆  that 

determines the directions of efforts: even when S is on the left of 𝑦 , player may prefer push 

the policy to the left if the equilibrium policy 𝛿∗ ends up being on the right of 𝑦 . Lastly, 

because 𝛿(𝜃; 𝑆) increases as 𝑆 gets larger, given (𝑥, 𝜃∗) is non-decreasing in 𝑆. 

3.2. Steady State  

In this subsection, we characterize equilibria where 𝛿∗ = 𝑆, namely steady-state equilibria. In 

such an equilibrium, the equilibrium groups are simply defined as 𝐿(𝑆) and 𝑅(𝑆). Given that 

the directions are set in the way to maximize each individual's utility, the game boils down to 

a simple collective-rent seeking game or a group contest. 

Again, for concreteness, let us consider the Tullock (1980) CSF and assume 𝜆 = 1. Taking the 

constants out of Eq. (1), the maximization problem of player 𝑖 in 𝑄(𝑆) (𝑤ℎ𝑒𝑟𝑒 𝑄 = 𝐿, 𝑅) can 

be rewritten as: 

max
𝛼 ∑ 𝑥∈

∑ 𝑥∈ ∪
− 𝑐(𝑥 ). 

Note that this objective function is identical to that in group contests with the value of the prize 

being 𝛼 (see Katz et al., 1990). Since a player can "win a (public-good) prize" even if she exerts 

zero effort, players have an incentive to free-ride on the efforts of the other players in the same 

group. The first-order condition for player 𝑖 in 𝑄(𝑆) is: 

𝛼 ∑ 𝑥∗
∈

∑ 𝑥∗
∈ ∪

− 𝑐 (𝑥∗) ≥ 0 

where the inequality condition is for a player who would choose 𝑥 = 0  because she is 

completely satisfied with the steady-state policy (i.e., 𝑦 = 𝑆 = 𝛿∗ ). In other words, in 

equilibrium, the FOCs hold as equality whenever 𝑥∗ > 0. Recall that the implemented policy 

coincides with the status quo if and only if ∑ 𝑥∗
∈ ( ) = ∑ 𝑥∗

∈ ( ) . Using this, we derive the 

following conditions: for all 𝑥∗ > 0, 
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∑ ∗
∈

= 𝑐 (𝑥∗) = (𝑥∗) .    (5) 

Equation (5) shows that the determination of the steady-state efforts and the corresponding 

policy crucially depend on the (non-)linearity of the cost function. If it is linear (𝛾 = 1), all the 

FOCs are identical to each other, so there is a large indeterminacy. In contrast, if it is convex 

(𝛾 > 1), regardless of how convex it is, everybody has to expend the same amount of effort in 

a steady-state equilibrium. 

    Now, consider the case with a convex distance measure, i.e., 𝜆 > 1. Given that 𝛿∗ = 𝑆, the 

FOC of player 𝑖's maximization problem is 

𝛼(|𝑆 − 𝑦 |)
𝛼 ∑ 𝑥∗

∈

∑ 𝑥∗
∈ ∪

− (𝑥∗) ≥ 0. 

 Let us first consider the case of the linear cost function (𝛾 = 1). Since in a steady-state, 

𝛼 ∑ 𝑥∗
∈ / ∑ 𝑥∗

∈ ∪  is common to every player, the players with the largest 

𝛼(|𝑆 − 𝑦 |) , that is, those farthest from 𝑆 expends a positive effort, while the others free-

ride. Because 𝑆 must be in between 0 and 1, the players farthest from 𝑆 in each group are those 

at the extremes, players 1 and 𝑁. In order for the FOCs of the extreme players to simultaneously 

hold as equality, |𝑆 − 𝑦 | must equal |𝑆 − 𝑦 |. Therefore, 𝑆 = (𝑦 + 𝑦 )/2 = 1/2. 

  Next, suppose that the cost function is also strictly convex (𝛾 > 1). Notice that equilibrium 

effort 𝑥∗  is (|𝑆 − 𝑦 |)  multiplied by 
∑ ∗

∈

∑ ∗
∈ ∪

/( )

 which is a factor common to 

everybody. Thus, for ∑ 𝑥∗
∈ = ∑ 𝑥∗

∈  to be the case, ∑ 𝑆 − 𝑦∈  must equal 

∑ 𝑆 − 𝑦∈ . Suppose the distance measure and the cost function are convex by the same 

degree, i.e., 𝛾 = 𝜆. Then, by equating ∑ 𝑆 − 𝑦∈  and ∑ 𝑆 − 𝑦∈ , we conclude that in 

such a case, 𝑆 = ∑ 𝑦 /𝑁. The above logic is valid for a more general adjustment function 

𝑝(𝒙, 𝒅), and the discussion thus far is summarized in the following proposition. 

Proposition 1. Suppose that a steady-state equilibrium exists. 

(i) If 𝛾 = 𝜆 = 1, any point in [0,1] can be a steady-state equilibrium policy. 
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(ii) If 𝛾 > 1 and 𝜆 = 1, a steady-state policy is the median player's ideal policy. That is, if 

𝑁 is an odd number, the steady-state policy must be 𝑦 , and for 𝑁 an even number, any 

point in [𝑦 , 𝑦 ] can be a steady-state policy. 

(iii) If 𝛾 = 1 and 𝜆 > 1, the steady-state policy is 1/2. 

(iv) If 𝛾 = 𝜆 > 0, the steady-state policy is the average of all ideal policies, ∑ 𝑦 /𝑁. 

Proof. Note first that for a more general 𝑝(𝒙, 𝒅), which can also be written as 𝑝(𝒙, 𝜃), for a 

proper 𝜃 by Lemma 1, the FOC is 

𝛼(|𝑆 − 𝑦 |)
𝜕𝑝(𝑥 , 𝒙 𝒊

∗ , 𝜃∗)

𝜕𝑥
| ∗ − (𝑥∗) ≥ 0. 

(i)   Suppose 𝛾 = 𝜆 = 1. Since a steady-state equilibrium exists by assumption, there exists 

a tuple (𝒙∗, 𝜃∗) that satisfies the FOCs. Now, pick an arbitrary status quo 𝑆 ∈ [0,1], let the 

groups be 𝐿(𝑆) and 𝑅(𝑆). Pick a vector 𝒙∗∗ such that 

𝑥∗∗

∈ ( )
= 𝑥∗

∈ ( ∗)
 

 and 

𝑥∗∗

∈ ( )
= 𝑥∗

∈ ( ∗)
. 

Then, since 𝑝(𝒙, 𝜃) = 𝑝 ∑ 𝑥∈ ( ) , ∑ 𝑥∈ ( ) , in other words, since the adjustment function 

depends only on the sums of efforts, 
( ,𝒙 𝒊

∗ , ∗)
| ∗ =

( ,𝒙 𝒊
∗∗ , )

| ∗∗ . Since the 

marginal cost of exerting effort is independent of the size (i.e., the RHS of the FOC is constant), 

the vector of efforts 𝑥∗∗ also satisfies the FOCs, and ∑ 𝑥∗∗
∈ ( ) = ∑ 𝑥∗∗

∈ ( )  by definition. 

Hence, 𝑥∗∗ together with the status quo 𝑆 also constitutes a steady-state equilibrium.   ■ 

(ii)   Now suppose 𝛾 > 1 and 𝜆 = 1. Because at a symmetric point (when ∑ 𝑥∈ = ∑ 𝑥∈ ) 

the marginal change 
(𝒙, )

 is identical to everybody, the first-order condition implies that the 

equilibrium effort, too, must be identical, unless 𝑥∗ = 0 . Note that since lim
→

𝑐 (𝑥) = 0 , 

lim
→

𝑢 (𝑥, 𝛿) > 0, which implies everybody but the player with 𝑦 = 𝑆 = 𝛿∗ prefers to exert a 

positive amount of effort. Since the equilibrium effort level is identical across the players, in 

order for the sums of efforts to be equal to each other, there should be an equal number of 
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players in each group. This implies that as long as 𝑆 divides the players into two symmetric 

groups, 𝑆 can be a steady-state policy.  ■ 

(iii)     Next, consider the case where 𝛾 = 1 and 𝜆 > 1. Since in a steady-state, 
( ,𝒙 𝒊

∗ , ∗)
| ∗ 

is common to every player, the players with the largest 𝛼(|𝑆 − 𝑦 |) , that is, those farthest 

from 𝑆 expends a positive effort, while the others free-ride. Because 𝑆 must be in between 0 

and 1, the players farthest from 𝑆 in each group are those at the extremes, players 1 and 𝑁. In 

order for the FOCs of the extreme players to simultaneously hold as equality, |𝑆 − 𝑦₁| must 

equal |𝑆 − 𝑦 |. Therefore, 𝑆 = (𝑦₁ + 𝑦 )/2 = 1/2.   ■ 

(iv)     Lastly, suppose that 𝛾 = 𝜆 > 0. From the FOC, we derive the following: if 𝑥∗ > 0, 

𝑥∗ = |𝑆 − 𝑦 |. 𝛼
𝜕𝑝(𝑥 , 𝒙 𝒊

∗ , 𝜃∗)

𝜕𝑥
| ∗

/( )

 

Because 
( ,𝒙 𝒊

∗ , ∗)
| ∗  is common to every player, for ∑ 𝑥∗

∈ = ∑ 𝑥∗
∈  to be the case, 

∑ 𝑆 − 𝑦∈  must equal ∑ 𝑆 − 𝑦∈ . By equating ∑ 𝑆 − 𝑦∈  and ∑ 𝑦 − 𝑆∈ , we 

conclude that 𝑆 = ∑ 𝑦 /𝑁. ■ 

From the objective function of player 𝑖, one can see that as the number of players in a group 

increases, the incentive to free-ride on the others' efforts increases. When both the distance and 

the cost functions are linear so that the smaller group has no disadvantage in terms of the cost 

or the utility, any policy can be a stable outcome of the game because the larger group suffers 

more with free-rider problem than the smaller group does. In contrast, when the cost function 

is convex, while the asymmetry in the severity of free-rider problem still exists, the cost 

disadvantage breaks the balance between the groups. The balance can be recovered only when 

the relative powers between the groups are equalized. 

This proposition shows that if the policy converges, it does to a "center" of which definition 

depends on the convexity of the distance measure (𝜆) and that of the cost function (𝛾). The 

convergence point can be the median, the mean of two extreme players, the mean of all players 

or some point between a mean and the median. An interesting question to ask is to which point 

the steady-state policy would converge (i) as 𝜆 goes to infinity, or (ii) as 𝛾 goes to infinity. 

First, if 𝜆 is very high, the marginal utility of having a policy closer to the ideal point will be 

extremely high for the players at the extremes compared to the other players'. Thus, as the 
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distance measure becomes more convex (i.e., as 𝑆 − 𝑦 ) becomes more sensitive to the 

distance), the steady-state policy would get closer to 1/2, the middle point of the two extremes. 

It is not difficult to see that this result resonates with the case of 𝛾 = 1. 

If the cost function is extremely convex, on the other hand, in the limit, the cost will be zero 

up to a certain point, then suddenly become infinity. Thus, it will be like everybody has one 

"vote" (observe that 𝑆 − 𝑦  becomes 1 as 𝛾 goes to infinity), therefore the policy that 

the median voter prefers will be implemented. Of course, this result is comparable to the case 

with 𝜆 = 1. 

What will steady-state equilibria look like if players are heterogeneous? Suppose first that 𝛾 =

1  and 𝜆 = 1 . When the players are identical in their valuation, this free-riding incentive 

prevents the policy from converging to a center. In contrast, if the players are heterogeneous, 

everybody but those with the highest marginal utility free-rides completely. Thus, the policy 

would converge to a point between the ideal points of two players with the highest marginal 

utilities. This case is comparable to the model of Baik (2016) who analyzes a group contest 

where the players decide whether to support one or both of the two alternatives. In his model, 

the cost function is assumed to be linear, and the (asymmetric) marginal utilities are 

exogenously given. 

Suppose that 𝛾 > 1 and 𝜆 = 1 and that players differ in their valuation (i.e., for some 𝑖 ≠

𝑗, 𝛼 ≠ 𝛼 ) and in their power or resource (i.e., 𝜇 ≠ 𝜇 ).7 

Define the power-adjusted valuation as 𝛼 =
/( )

. If there exists a player i such that 

∑ 𝛼∈ ( ) − ∑ 𝛼∈ ( ) < 𝛼 , then it is straightforward to show that 𝑦  can be a steady-state 

equilibrium policy. That is, such player i is a median influencer. Notice that the inequality holds 

more easily when 𝛼  is greater. So the steady-state outcome is likely to be the ideal policy of a 

strong player who is more or less in the middle. If there does not exist such a player, the steady-

state outcome will be somewhere in between two median players. This type of "median voter 

theorem" (or some variations of it) has often been used by some political scientists to predict 

the outcome of a complicated political game (e.g. Bueno de Mesquita, 2000, 2002). Its 

performance has proven outstanding, but it is difficult to say that such practices have always 

                                                           
7 Recall that 𝜇  is a factor multiplied to the effort cost. So, a smaller 𝜇  represents a stronger power. 
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been firmly micro-founded. The analysis in this subsection provides a micro-foundation of 

such forecasting exercises. 

The third and fourth parts of Proposition 1 also can easily be generalized to the case with 

heterogeneous players. If 𝛾 = 1 and 𝜆 is sufficiently large, then still only the two extreme 

players will be active. However, the steady-state policy will not be the exact mean of the two 

ideal policies but a weighted average of which weight reflects the power-adjusted valuations 

of the two players. 

Lastly, suppose that 𝛾 = 𝜆 > 0. Then, for ∑ 𝑥∗
∈  to equal∑ 𝑥∗

∈ , ∑ 𝛼 𝑆 − 𝑦∈  must be 

equal to ∑ 𝛼 𝑆 − 𝑦∈ . Therefore, the steady-state outcome must be the weighted average of 

the players' ideal policies: 𝑆 =
∑

∑
. 

 

4. Dynamic Analyses 

In this Section we explore the dynamics of an infinite-horizon model to show that the incentive 

to free-ride slows down the convergence to the median player. First we characterize the 

dynamics under certain conditions. Then we run a robustness check.  

4.1 Dynamic Equilibrium  

In this subsection, we investigate the dynamics of the model, assuming that (i) the adjustment 

function is the Tullock-type CSF, (ii) 𝜆 = 1 and (iii) 𝑁 = 3. Suppose that the game analyzed 

so far is repeated infinitely many times (𝑡 = 1,2, . . , ∞)  and that for any 𝑖  and 𝑡 , player 𝑖 

maximizes the discounted utility: 

𝑈 = 𝛽  𝑢 (𝛿 , 𝑥 ) = 𝛽  −𝛼|𝛿 − 𝑦 | − 𝑥 /𝛾  

where 𝛽 ∈ [0,1) is the common discount factor, and 𝑥  is the effort exerted at period 𝑡. The 

status quo at period 𝑡 + 1 is given by the implemented policy at 𝑡  (i.e., 𝑆 = 𝛿 ). For 𝛽 

sufficiently large, there exist infinitely many (collusive) subgame perfect equilibria which 

depend on the history of actions, which we do not intend to explore here. Instead, we focus on 

equilibria in which a strategy 𝑥  is a function of the status quo 𝑆 . If 𝛾 = 1, any policy can be 

a steady-state policy, which means that in such a case, the dynamics is either trivial or arbitrary. 

Thus, in this subsection, the cost function is assumed to be strictly convex. 
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Since the dynamics from the left to the right and the other way around are symmetric, we only 

consider the case with 𝑆₁ < 𝑦 = 𝑦₂. As will be shown more clearly in the proof of Proposition 

2, given 𝑆₁ < 𝑦 , 𝛿 ≤ 𝑦  for all 𝑡. In other words, the equilibrium policy never crosses the 

ideal point of the median player. This implies that 𝐿 = {1} and 𝑅 = {2, 3} for all 𝑡. 

Using the fact that 𝑆 = 𝑆 + 𝑝 = 𝑆 + 𝑝 + 𝑝 =. . . = 𝑆 + ∑ 𝑝 , we can 

rewrite the discounted utility as: 

𝛽 −𝛼|𝑆 + 𝑝 − 𝑦 | − 𝑥 /𝛾  

= −𝛼
1

1 − 𝛽
(𝑆 + 𝑝 − 𝑦 ) + 𝛽 𝑝 −

𝑥

𝛾
− 𝛽

𝑥

𝛾
  

One can easily see that because a change in the policy has a permanent effect, the marginal 

utility of having a more desirable policy is always 𝛼/(1 − 𝛽), meaning that it does not depend 

on 𝑆 . Then by envelop theorem, we can ignore the decision in period 𝑡 + 1 and onward 

({𝑥 } ) when considering the decision making at period 𝑡. Thus, the first-order condition 

with respect to 𝑥  is: 

𝛼

1 − 𝛽

𝜕𝑝(𝑥 , 𝒙 𝒊𝒕
∗ , 𝜃∗)

𝜕𝑥
| ∗ − (𝑥∗ ) ≥ 0 

where the inequality condition is for the median player facing 𝑆  close enough to 𝑦 . 

To proceed further, suppose the adjustment function is the Tullock-type CSF defined in (2). 

Let us suppose for a moment that all the FOCs hold as equality as 𝑆  is far enough from 𝑦 . In 

this case, 𝑥∗ = 𝑥∗  because player 2 and 3 are in the same group and because their FOCs are 

identical. Thus, the FOCs are: 

∗

∗ ∗
 = (𝑥∗ ) − 1    (5) 

∗

∗ ∗
 = (𝑥∗ ) − 1    (6) 

from which we derive the following proposition. 

Proposition 2. Suppose that the adjustment function is the Tullock-type CSF. For any initial 

policy 𝑆₁ ∈ [0,1] , there exists an equilibrium in which {𝛿 }  converges to the median 
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player's ideal policy 𝑦 . As 𝛼 or 𝛽 gets larger, the equilibrium effort level 𝑥∗  also grows larger. 

However, the speed of convergence does not depend on 𝛼 and 𝛽, but it increases in 𝛾. 

Proof. We prove the proposition by construction. Observe that according to (3), given the 

groups and the efforts 𝑥, 𝑆 and 𝛿 are one-to-one. Thus, we can recover 𝑆 from 𝛿. Using this 

idea, an equilibrium can be constructed as follows. First, pick a dividing rule �̅� (< 𝑦 ), and 

calculate the optimal efforts using (6) and (7). This yields the equilibrium efforts: 

𝑥∗ = 2
𝛼

1 − 𝛽

2

2 + 2

 

𝑥∗ = 𝑥∗ =
𝛼

1 − 𝛽

2

2 + 2

 

and the adjustment 𝑝(𝑥∗, �̅� ) = = �̅�. 

 Let 𝛿 = �̅� , and solve (3) for 𝑆 . Denote this calculated status quo by 𝑆̅ . Then, given 𝑆̅ , an 

equilibrium policy is �̅� . Note that when �̅� = 𝑦 , the first-order condition for the median player 

does not have to hold as equality. Let us define 𝑆 = 𝑦 + �̅� and 𝑆 = 𝑦 − �̅�. Then, for 

𝑆 ∈ [𝑆 , 𝑆 ], instead of the equality FOC of the median player, equation 𝑝(𝑥 , 𝒙 𝒎, 𝑑∗) =

𝑦 − 𝑆  together with the FOCs for the other players characterizes the equilibrium. 

In this equilibrium, {𝛿 }  converges to the median in each round as much as �̅� when 𝑆 ∉

[𝑆 , 𝑆 ], and once 𝑆 ∈ [𝑆 , 𝑆 ], 𝛿  is decided to be 𝑦 , and stays there forever. Thus, 

as claimed above, {𝛿 }  does not oscillate around 𝑦 , so the initial grouping remains valid 

until 𝛿  reaches 𝑦 . From the above formulas, one can easily see that 𝑥∗  increases in 𝛼 and 𝛽, 

and that the speed of convergence does not depend on 𝛼 and 𝛽 but on 𝛾. More specifically, �̅� 

increases in 𝛾.           ∎ 

We have reasonable belief that {𝛿 }  converges to the median under a set of more relaxed 

assumptions, and the result regarding the equilibrium effort level will remain valid. However, 

the speed of convergence may depend on 𝛼 and 𝛽 if another type of adjustment function is 

used, if the players are asymmetric, or when the distance measure is non-linear. 
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It is also worth mentioning that the speed of convergence is determined by both the free-riding 

incentive and the cost advantage: the amount of efforts in the larger group (𝑥∗ + 𝑥∗ ) is not 

twice as large as the effort level in the smaller group (𝑥∗ ) because the players in the larger 

group have an incentive to free-ride on each other's effort, which slows down the convergence. 

As 𝛾 gets larger, on the other hand, the cost advantage of the larger group becomes more 

significant, so the policy converges faster to the median. 

4.2 Robustness in dynamics 

One may wonder whether our main results remain valid even if the functional form 

assumptions on the distance and the cost functions are relaxed. The answer is yes if we make 

a simplifying assumption on the adjustment function as follows: 

𝑝(𝒙, 𝒅) = 𝜂 𝑑 𝑥  

for some 𝜂 positive but small. That is, the adjustment function is linear. Then, we can show the 

following. 

Proposition 3. Suppose the adjustment function is linear. Let us further assume that the 

distance function ‖𝛿 − 𝑦‖ and the cost function 𝑐 (𝑥) are strictly convex and continuously 

differentiable and that the first derivative of the distance function is zero at 𝛿 = 𝑦 , i.e., 

‖ ‖

|
= 0. Then, the steady state equilibrium exists and is unique. If the agents behave 

myopically (i.e., the static optimal behavior is repeated), the policy 𝛿 converges to the steady 

state equilibrium. 

Proof. Given the status quo policy, an individual's maximization problem has an interior 

solution because the distance and the cost functions are strictly convex. And the first-order 

condition is 

𝛼 𝜂
𝜕‖𝛿 − 𝑦 ‖

𝜕𝛿
| ∗ − 𝑐 (𝑥∗) = 0 

 Let 𝑥 (𝛿) be the optimal effort given the policy 𝛿, i.e., 

𝑥 𝛿 = (𝑐 ) 𝛼 𝜂
𝜕‖𝛿 − 𝑦 ‖

𝜕𝛿
| . 
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Since 𝑐 (𝑥)  is strictly convex and continously differentiable, the inverse function of the 

marginal cost is monotone increasing and continuous. Therefore, the optimal effort increases 

as 𝛿 moves away from 𝑦 . Define 

𝑓 𝛿 = 𝑥 𝛿
∈

− 𝑥 𝛿
∈

. 

 

 Note that 𝑓(0) ≤ 0 ≤ 𝑓(1)  because 𝑦 ∈ [0,1]  for all 𝑖  and that 𝑓(𝛿)  is increasing. 𝑓(𝛿) 

continous in 𝛿 because 
‖ ‖

| = 0. Thus, 𝑓 𝛿 = 0  for a 𝛿, and such 𝛿 is unique.  

To see the myopic dynamics, suppose that the equilibrium policy 𝛿∗ is smaller than the steady 

state policy, which means that 𝑓(𝛿∗) < 0 or equivalently 𝑝(𝒙, 𝒅) > 0. Since the adjustment is 

made toward the right extreme, the status quo S must be even smaller than 𝛿∗. In other words, 

𝑆 was farther from the steady state than 𝛿∗ is. Thus, the static equilibrium policy converges 

toward the steady state policy. The analysis for 𝛿∗ is smaller than the steady state policy is 

analogous, and thus omitted.          ∎ 

 

5.  Discussion 

We construct a spatial voting model without the “one person, one vote” restriction and show 

that in equilibrium two groups endogenously emerge who try to implement opposing policies. 

We also show that depending on costs and preferences, a central policy (e.g., median / mean / 

middle) is the steady state equilibrium. The results are summarized in Table 1 below.  

Table 1. Result summary  

Effort cost Distance cost Steady state Equilibrium  

Linear Linear Any policy 

Convex Linear Median player’s ideal policy 

Linear Convex Mean of two extreme players’ ideal policy 

Convex Convex Mean of all players’ ideal policies 

 

Proposition 1 and the table above essentially provide the Central Influencer results for the static 

case. It shows that if both the disutility of non-optimal policy and the effort cost function are 
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linear, any policy can be a steady-state policy. However, if the disutility of non-optimal policy 

is linear and the effort cost function is convex, the optimal policy for a median player is a 

steady-state policy. This is comparable to the standard median voter theorem. If the disutility 

of non-optimal policy is convex and the effort cost function is linear, then our model is very 

similar to that of Baik (2017). Whereas Baik’s model resembles a representative democracy, 

ours is comparable to a direct democracy. Unlike Baik (2017), the marginal utility of exerting 

effort is endogenous in our model, and hence we find that the steady-state policy is the mean 

of the two extreme players’ optimal policies. When the disutility of non-optimal policy and the 

effort cost function are equally convex, the steady-state policy is the (weighted) average of all 

players’ optimal policies. Duggan and Gao (2020), in another setting, found that ‘risk loving 

equilibrium’ is the mean of all players’ ideal points. In our setting the players are risk neutral, 

but they form group endogenously and we reach to similar conclusions.   

We implement a 3-player infinite horizon model to study dynamics. We find that in an infinite 

horizon model, there exists an equilibrium in which the policy converges to the median player, 

but in general it may not happen. We also find that the players expend more effort in each 

period as they become more patient. The convergence speed does not depend on the discount 

factor, but does depend on the effort cost. These results are in contrast with the dynamic models 

of Baron (1996) who finds that in collective goods programs equilibrium programs ultimately 

converge to the median. 

Overall, parts of our results can be matched with Gerber and Lewis (2004) who find empirically 

that legislative decisions are aligned with median voter only under certain conditions. Our 

results can also be compared with a series of results that show in very different settings that 

median voter type of equilibrium may not be achieved. Overall, these result support the idea 

raised by Hinich (1977) that median voter results are often artefact instead of a general result. 

Our results can have implications in the spatial competition model as well and connect to the 

researchers in lobbying and politics. This model has been the workhorse model in the domain 

of general interest politics but has not been very popular among the studies in special interest 

politics. As an exception, Coate (2004) considers a game in which politicians finance 

advertising campaign and interest groups provide contributions to like-minded candidates. But 

not all political influences are mediated by or aimed for a public election, e.g. international 

politics. We consider a direct competition among influential parties on a single-dimension 

policy space. Moreover, a line of literature in the political science have forecasted the outcome 
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of complicated political games using a version of median voter theorem (e.g., Bueno de 

Mesquita, 2000, 2002). But it has been difficult to conclude that such practices have always 

been firmly micro-founded. We provide a micro-foundation for the same. 

The study be advanced in to various directions. First, it would be interesting to generalize the 

model with generic cost and disutility functions, extending the policy space beyond linearity, 

and including more players in the dynamic version. Second, the collective action function or 

the network has been assumed to be additive (a la, Katz et al., 1990). Network effects such as 

Weakest link (Lee, 2012), best shot (Chowdhury et al., 2014), or a mix (Chowdhury and 

Topolyan, 2016) can be introduced. Finally, empirical and experimental investigations of the 

theoretical findings may be possible. None of these extensions, however, substitutes the new 

findings that we have achieved in this study and hence we leave these ideas for future research.  
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