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Abstract

In this paper, we study functional ordinary least squares estimator and its properties in testing the hypothesis of a con-
stant zero mean function or an unknown constant non-zero mean function. We exploit the recent work by Cho, Phillips,
and Seo (2021) and show that the associated Wald test statistics have standard chi-square limiting null distributions,
standard non-central chi-square distributions for local alternatives converging to zero at a

√
n rate, and are consistent

against global alternatives. These properties permit computationally convenient tests of hypotheses involving nuisance
parameters. In particular, we develop new alternatives to tests for regression misspecification, that involves nuisance
parameters identified only under the alternative. In Monte Carlo studies, we find that our tests have well behaved levels.
We also find that functional ordinary least squares tests can have power better than existing methods that do not exploit
this covariance structure, like the specification testing procedures of Bierens (1982, 1990) or Stinchcombe and White
(1998). Finally, we apply our methodology to the probit models for voting turnout that are estimated by Wolfinger and
Resenstone (1980) and Nagler (1991) and test whether the models are correctly specified or not.
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1 Introduction

A considerable variety of useful testing procedures involve “nuisance” parameters. Examples are those considered in the

work of Davies (1977, 1987), Bierens (1982, 1990), Bierens and Ploberger (1997), Andrews (1994), Stinchcombe and

White (1998), Baek et al. (2015), and Cho and Phillips (2018), among others. In these examples, as well as in this context

generally, test statistics are constructed by “integrating out” the nuisance parameters, yielding nuisance parameter-free

tests. A general consequence of this approach is that the limiting null distributions of the resulting test statistics are highly

context specific, requiring special purpose computations to obtain suitable critical values.

In this paper, we consider a different approach, useful in this context, that yields statistics having standard chi-square

limiting null distributions. In some cases, our procedures can have better power than previous procedures. For example,

this is illustrated by the specification tests of Bierens (1982, 1990) and Stinchcombe and White (1998). Note that the tests

of Bierens (1982, 1990) and Stinchcombe and White (1998) do not take account of correlations among the elements of the

Gaussian process underlying the test statistic as for the test in Davies (1987). Our procedures also do not take account of

the correlations, but this affords computational convenience, analogous to the way that tests based on heteroskedasticity-

consistent covariance matrices yield convenient tests of proper size by neglecting efficiency improvements that could be

gained by modeling the heteroskedasticity.

The approach taken here is that of hypothesis testing in functional regression by applying the functional least squares

estimator in Cho, Phillips, and Seo (2021), who examine estimating a parametric model for the conditional mean of

a continuous functional observation by the functional least squares estimation. We apply their approach by supposing

possibly discontinuous functional data and a model constructed by non-random functions attached to linear coefficients

to infer the mean function, and from this we provide an estimator and its asymptotic properties along with properly

tailored regularity conditions for the estimator. Specifically, the dependent variable is a random function (of γ ∈ Γ,

say) rather than a random variable, and the regressors are user-specified non-random functions of γ chosen to give a

good approximation to the mean function of the dependent variable. Under the null hypotheses of interest here, this

mean function is either the zero function or an unknown non-zero constant function. We analyze testing procedures

designed to have power against the alternatives to either of these nulls by specifying a linear model constructed by

deterministic functions with unknown linear coefficients. An appealing consequence of using functional regression is

that the resulting test statistics have standard chi-square limiting distributions under the null. Wald, Lagrange multiplier,

and quasi-likelihood ratio versions of these statistics are available. For concreteness and conciseness, our focus here is

on the use of Wald statistics.

Although functional regression is of theoretical interest in its own right, our focus here is also in illustrating its useful-

ness in specific application areas. In one sense, functional regression is familiar, in that standard panel data structures can

be viewed as examples of functional data. We illustrate this with a running example focused on tests of random effects

structure in panel data. On the other hand, the functions of interest arising in the analysis of models involving nuisance
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parameters identified only under the alternative can also be viewed as instances of functional data. We exploit this here

to provide appealing ways of testing hypotheses concerning unidentified nuisance parameters. We pay specific attention

to specification testing, as in Bierens (1982, 1990) and Stinchcombe and White (1998).

Functional data analysis is getting popular. We mention a few recent developments. Crambes, Gannoun, and Henchiri

(2013) estimate a quantile regression function with a functional covariate by the support vector machine when the de-

pendent variable is a real random variable. Zhang and Chen (2007) first apply the local polynomial kernel estimation to

discrete data and next estimate the functional coefficients of the covariates consisted of random variables according to

the so-called “smoothing first, then estimation” principle. The authors show that the influence of the smoothing process

is diluted as the sample size tends to infinity under some mild regularity conditions. Li, Robinson, and Shang (2020)

examine time series of function space curves with long range dependence to yield the limit theory for the sample aver-

age of functional observations. They further estimate the covariance kernel function of the functional data by using the

functional principal component analysis. Chang, Hu, and Park (2019) estimate a functional autoregressive model with

serially correlated functional data, establishing limit theory of their estimator. Phillips and Jiang (2019) study parametric

autoregression with function valued time series in stationary and nonstationary cases and also establish limit theory of

their estimation. Finally, when the conditioning variable is a random variable, Cho et al. (2021) examine estimating the

conditional mean of functional data, that is nonlinear with respect to unknown parameters. These papers assume the use

of functional data but differ from the current paper as the current study focuses on the inference of a parametric population

mean function.

The plan of this paper is as follows. In Section 2, we motivate and formally describe the data generating process

(DGP) underlying functional regression, illustrating with examples involving random effect structure in the context of

panel data and specification testing. In Section 3, we introduce the functional ordinary least squares (FOLS) and two-stage

FOLS (TSFOLS) estimators that are obtained by imposing the linear structure to the functional regression. We provide

conditions under which these estimators are consistent and asymptotically normal, and we provide consistent estimators

of their asymptotic covariance matrices. In Section 4, we specify the null hypotheses of interest and introduce Wald

statistics useful for testing these. As we show, these statistics have standard chi-square distributions under the null. We

analyze their global and local power properties. Globally, our procedures are consistent; locally we obtain standard non-

central chi-square distributions for alternatives converging at the parametric
√
n rate, where n is the sample size. Section

5 applies the theory developed in the preceding sections to obtain test statistics for our panel data and specification testing

examples. Section 6 provides a Monte Carlo analysis and an empirical application of FOLS estimator, where we study the

finite and large sample properties of tests based on the statistics developed in Section 5. We also apply our methodology

and test whether popularly assumed models for voting turnout are correctly specified or not by using 1984 presidential

election data of the US. Section 7 contains a summary and concluding remarks.

Before proceeding, we introduce some mathematical notation used throughout. First, integrals of functions will be
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often used in this paper, and we let
∫
g dP and

∫
h dPdQ respectively denote

∫
g(x)dP(x) and

∫ ∫
h(x, y)dP(x)dQ(y)

for brevity, unless confusion otherwise arises. When there is no possible ambiguity, we may further abbreviate these to∫
g and

∫ ∫
h. Unless explicitly noted otherwise, limits are taken as n→∞.

2 The Data Generating Process and Functional Regression

In this section, we motivate and formally describe the DGP underlying functional regression.

2.1 The Data Generating Process

We consider data generated as follows:

Assumption 1 (DGP-A). (i) Let (Ω,F ,P) be a complete probability space and let (Γ, ρ) be a compact metric space;

(ii) For i = 1, 2, ..., let Gi : Ω × Γ 7→ R be such that for each γ ∈ Γ, Gi( · , γ) is measurable and independently and

identically distributed (IID). �

Often in prior literature, such a functionGi is used to define a model, that is a collection of functions Gi := {Gi( · , γ) :

γ ∈ Γ} that, when “correctly specified,” includes some functional of a DGP for random variables of interest. (See, for

example, White, 1994, ch. 2.2.) For example, in that context, Gi(ω, · ) might represent the log-likelihood function for

observation i, determined by the realization ω ∈ Ω. Correct specification occurs when there is γ0 ∈ Γ such thatGi( · , γ0)

represents the log density of the DGP for observation i.

Here, we view Gi rather differently. Specifically, we view the observed data not as realizations of random variables,

as is common, but as realizations of random functions γ 7→ Gi( · , γ). That is, we observe Gi(ω, · ) : Γ 7→ R, i = 1, 2, ...

for some ω ∈ Ω. The IID condition is not essential, but we impose it to keep the main ideas clear. Because our interest is

primarily on Gi as a random function of γ, we may abbreviate Gi( · , γ) as Gi(γ) for notational simplicity.

The data structure in Assumption 1 is more general than that assumed by Cho et al. (2021). Note that we do not

impose any functional restriction to the functional data, whereas they restrict their interest to continuous functional data.

One of the examples we discuss below assumes functional data that are discrete at equally distanced points. We therefore

do not assume the continuity condition as they do.

To illustrate, we discuss two examples. First, we show how the familiar case of panel data falls into the present

framework. As we show later, this supports tests for features of interest in panel data, such as random effects structure.

We operate within the panel data setting nicely exposited by Wooldridge (2010, ch.10.4).

Example 1 (Panel Random Effects): Let γ ∈ Γ := {1, 2, ..., T}, and suppose data are generated as Yi(γ) = Xi(γ)′β0 +

Vi(γ), i = 1, 2, ..., where β0 ∈ Rd and Vi(γ) := Ci + Ui(γ). We assume that (Yi, X
′
i)
′ : Ω × Γ 7→ R1+d is IID. Ui :

Ω×Γ 7→ R and Ci : Ω 7→ R are unobserved. Let Xi := (Xi(1), Xi(2), · · · , Xi(T ))′,Vi := (Vi(1), Vi(2), · · · , Vi(T ))′,
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and assume that Σ := E[ViV
′
i] is finite and positive definite, with rank(E[X′iΣ

−1Xi]) = d. The data exhibit random

effects structure when, for i = 1, 2, ...,

1. Ui(γ) is IID with respect to γ, and E[Ui(γ)|Xi(γ), Ci] = 0 for each γ ∈ Γ; and

2. E[Ci|Xi(γ)] = E[Ci] = 0 for each γ ∈ Γ.

Under these assumptions, we may write σ2
u := E[Ui(γ)2] for all γ ∈ Γ and σ2

c := E[C2
i ]. The covariance matrix Σ has

the form

Σ =


σ2
u + σ2

c σ2
c · · · σ2

c

σ2
c σ2

u + σ2
c · · · σ2

c

...
...

. . .
...

σ2
c σ2

c · · · σ2
u + σ2

c


.

When σ2
c = 0, the unobserved effect Ci is absent, and Vi is identical to Ui.

Now consider Gi(γ) = Vi(1)Vi(γ). Under random effects with E[Gi(γ)] = 0 for all γ ∈ Γ r {1}, the conventional

pooled OLS estimator for β0 is efficient, and we can use pooled OLS to conduct efficient statistical inference. On the

other hand, when E[Gi(γ)] = σ2
c > 0 for γ ∈ Γ r {1}, the feasible generalized least squares (FGLS) estimator that

exploits the structure of Σ is more efficient than pooled OLS. Moreover, the presence of the unobserved effect Ci may

necessitate the use of methods appropriate for handling unobserved fixed effects. �

Another leading case of interest here is associated with what is known in the literature as “nuisance parameters

identified only under the alternative.” See, for example, Davies (1977, 1987), Andrews (2001), Cho and White (2007,

2010), Baek et al. (2015), Cho and Phillips (2018) and the references therein. An important example involving nuisance

parameters present only the alternative is the specification testing framework of Bierens (1990) and its extensions (e.g.,

Stinchcombe and White, 1998, (SW)).

Example 2 (Specification Testing): Let {(Yi, X ′i)′ ∈ R1+d} be IID, and suppose E[Yi|Xi] is modeled by a set of

functions, say M := {f(X,θ) : θ ∈ Θ ⊂ Rm}, where d and m are finite integers. Further, for γ ∈ Γ, let Gi(γ) =

[Yi − f(Xi,θ
∗)]ψ{γ′Xi}, where θ∗ is the probability limit of an estimator θ̂n, e.g., the nonlinear least squares (NLS) or

quasi-maximum likelihood (QML) estimator:

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

[Yi − f(Xi,θ)]2;

and ψ : R → R is a given function. Bierens (1990) specifies ψ = exp; SW consider large families of choices for ψ,

notably the comprehensively revealing (CR) and the generically CR (GCR) families1.

This choice forGi is easily seen to satisfy Assumption 1 under mild conditions on f andψ. Further,Gi has remarkable

1To ensure boundedness, Bierens (1990) replaces Xi with Φ(Xi), a d × 1 vector of measurable bounded one-to-one mapping from Rd to Rd,
such as Φ(Xi) := [tan−1(X1i), tan−1(X2i), · · · , tan−1(Xdi)].

′ We leave this implicit here.
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and useful properties. Specifically, as Bierens (1990) and SW show, when M is correctly specified (so that there exists

θ0 ∈ Θ such that E[Yi|Xi] = f(Xi,θ0)), provided that θ∗ = θ0 (as holds for the NLS estimator as well as for

linear exponential family-based QML estimators generally), then E[Gi(γ)] = 0 for all γ ∈ Γ; whereas when M is not

correctly specified and ψ is GCR (e.g., ψ = exp is GCR), SW showE[Gi(γ)] 6= 0 for almost all γ ∈ Γ. Bierens (1990)

and SW exploit this property to construct tests for model misspecification. Their test statistics are based on

Zn(γ) :=
1√
n

n∑
i=1

Gi(γ). �

As these examples suggest, our main interest here concerns the population mean functional µ of Gi (when it exists)

defined by

µ(γ) := EP[Gi(γ)] :=

∫
Gi(γ)dP, γ ∈ Γ.

We exploit the identical distribution assumption to drop the i subscript for µ.

We pay particular attention to certain functionals of µ. To specify these, we introduce the notion of an adjunct

probability measure Q on Γ. This measure should be viewed as one selected by the researcher; it corresponds to the

familiar notion of a regression design. We specify its properties formally as follows:

Assumption 2 (Adjunct Probability Measure). (i) (Γ,G,Q) and (Ω×Γ,F⊗G,P·Q) are complete probability spaces;

(ii) For i = 1, 2, ...., Gi is measurable −F ⊗ G. �

The sample space is now the Cartesian product, Ω× Γ; the sigma field F ⊗ G is the product sigma field generated by F

and G. Because (Γ, ρ) is a metric space, there exists a topology generated by ρ.We may take G to be the Borel sigma field

generated by this topology. The product probability measure P ·Q governs events jointly involving ω and γ. Because of

its product structure, we have independence, in the usual sense that P ·Q[F ×G] = P[F ] ·Q[G] for all F ∈ F andG ∈ G.

The assumed joint measurability for Gi follows, for example, by (Stinchcombe and White, 1992, lemma 2.15), if

Gi( · , γ) is measurable for each γ ∈ Γ and Gi(ω, · ) is continuous on Γ for all ω ∈ F, P[F ] = 1.

Under suitable integrability conditions, our assumptions ensure that integrals of the form
∫ ∫

Hi(ω, γ)dQ(γ)dP(ω)

are well defined. Of immediate interest is the integral arising when Hi(ω, γ) = {Gi(ω, γ)−m(γ)}2, yielding

∫ ∫
{Gi −m}2dQdP =

∫ ∫
{Gi(ω, γ)−m(γ)}2dQ(γ)dP(ω).

This is the Q−functional mean squared error (Q−FMSE) for m as a predictor of Gi. For every Q, the function m∗ min-

imizing the Q−FMSE is essentially the functional mean, µ. To establish this, we introduce some notation and add some

suitable regularity. First, we writeL2(P) := {f :
∫
|f(ω)|2dP(ω) <∞} and similarlyL2(Q) := {f :

∫
|f(γ)|2dQ(γ) <

∞}, where f is measurable-F in the first instance and measurable-G in the second.
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Assumption 3 (Domination). For random variables Mi ∈ L2(P), supγ∈Γ |Gi(γ)| ≤Mi, i = 1, 2, .... �

From this, it follows that µ as defined above exists and is measurable −G, and that µ ∈ L2(Q). Note that the optimized

Q−FMSE depends on Q. In particular, if for some γ0 ∈ Γ, Q is selected so that Q(G) = 1 if γ0 ∈ G ∈ G and

Q(G) = 0 otherwise, then m∗ = µ a.s.−Q holds for the constant function m∗ = µ(γ0), and the minimized Q−FMSE is∫
varP[Gi(γ)]dQ(γ) = varP[Gi(γ0)]. This replicates the familiar result for random variables that the expectation µ(γ0) is

the best mean-squared error predictor for the random variableGi(γ0).Analogously, the function defined by µ(γ) provides

a Q−FMSE optimal prediction for the random function defined by Gi( · , γ).

2.2 Functional Regression

Our primary interest attaches to testing hypotheses about µ. For example, given a known function m∗ ∈ L2(Q), suppose

we are interested in testing

Ho : µ = m∗ a.s.−Q vs. HA : Ho is false.

Because m∗ is known, this is equivalent to testing

Ho : µ∗ = 0 a.s.−Q vs. HA : Ho is false,

where µ∗ := µ−m∗ = EP[G∗i ], with G∗i (γ) := Gi(γ)−m∗(γ).

We may be also interested in testing

Ho : µ∗ = c a.s.−Q vs. HA : Ho is false,

where c is an unknown real constant. For example, in our panel data example, this case is relevant in testing the null of no

serial correlation in Ui with respect to γ versus serial correlation in Ui in the possible presence of the unobserved effect

Ci.

In what follows, we drop the superscript ∗, letting any recentering by known m∗ be implicit, and just consider testing

H1o : µ = 0 a.s.−Q vs. H1A : H1o is false; and

H2o : µ = c a.s.−Q vs. H2A : H2o is false.

Power against particular alternatives may be enhanced by making use of non-constant basis functions gj : Γ 7→ R,

j = 1, 2, ..., k; we write g := (g1, g2, ..., gk)
′. The next assumption specifies their properties. We let λmin( · ) and

λmax( · ) denote the minimum and maximum eigenvalues respectively of a given matrix.

Assumption 4 (Basis Functions). (i) For each j = 1, 2, ..., k, gj : Γ 7→ R is measurable−G;
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(ii) For each j = 1, 2, ..., k, gj ∈ L2(Q); and

(iii) λmin(A) > 0, where

A :=

 1
∫

g(γ)′dQ(γ)∫
g(γ)dQ(γ)

∫
g(γ)g(γ)′dQ(γ)

 . �

Assumption 4(ii) ensures that λmax(A) <∞. Assumption 4(iii) ensures that the elements of g are non-constant and non-

redundant. As both g and Q are under the researcher’s control, verifying Assumption 4 is in principle straightforward.

We use g to approximate µ. Specifically, we consider linear approximations to µ of the form m( · , ξ) = δ0 + g( · )′δ.

Thus, m belongs to the linear model

A(g) := {δ0 + g( · )′δ : (δ0, δ) ∈ R1+k}.

A “trivial” but important special case for g is that in which g has no elements. This gives the simplest test of H1o,

although this choice is not relevant for testing H2o. The most convenient non-trivial choice for g is g(γ) = γ, that yields

a linear functional regression. The model structure of A(g) is simpler than that considered by Cho et al. (2021) as their

model consists of random functions and is nonlinearly parameterized. Due to this simple structure, we can provide better

tailored regularity conditions for our estimator without imposing many regularity conditions.

More elaborate choices of g are often relevant. In some cases, the alternative may provide specific knowledge about

relevant choices for g. Alternatively, one can use series functions, such as suitably chosen polynomials in γ, just as when

one approximates a standard conditional expectation. The key idea is that power may be gained by selecting g to capture

salient features of µ under important or plausible alternatives.

When H1o holds, we have the regression representation

Gi( · ) = δ†0 + g( · )′δ† + εi( · ), (1)

where δ†0 = 0, δ† = 0, EP[εi( · )] ≡ 0, and EP[g( · )εi( · )] ≡ 0. When H2o holds we have the same representation, but

now with δ†0 = c, δ† = 0. We call a representation of the form given by (1) a functional regression.

We let δ∗0 and δ∗ index the Q−FMSE optimizer. That is, m( · , ξ∗) solves

inf
m∈A(g)

∫ ∫
{Gi −m}2dQdP =

∫
varP[Gi]dQ + inf

δ0,δ

∫
{µ− δ0 − g′δ}2dQ.

The first-order conditions for the optimum are

∫
µ(γ)dQ(γ) = δ∗0 +

∫
g(γ)′δ∗dQ(γ); and
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∫
µ(γ)g(γ)dQ(γ) =

∫
(δ∗0 + g(γ)′δ∗)g(γ)dQ(γ).

These yield convenient expressions for δ∗0 and δ∗, analogous to the standard regression approximation case:

ξ∗ :=

 δ∗0

δ∗

 :=

 EQ[µ]

0

+

 −EQ[ g ]′covQ[g,g]−1covQ[g, µ]

covQ[g,g]−1covQ[g, µ]

 ,
where EQ[µ] :=

∫
µ dQ, EQ[ g ] :=

∫
g dQ;

covQ[g,g] :=

∫
g(γ)g(γ)′ dQ(γ)−

(∫
g(γ) dQ(γ)

)(∫
g(γ)′dQ(γ)

)
; and

covQ[g, µ] :=

∫
g(γ)µ(γ) dQ(γ)−

(∫
g(γ) dQ(γ)

)(∫
µ(γ)dQ(γ)

)
.

It is readily verified that if µ = 0 a.s. − Q (H1o holds) then ξ∗ = [0,0′]′. If instead, for unknown constant c, µ = c

a.s. − Q (H2o holds) then ξ∗ = [c,0′]′. Thus, δ∗0 and δ∗ coincide with the coefficients of the functional regression

representation for Gi( · ) under H1o and H2o.

On the other hand, if H1o does not hold, then δ∗0 or δ∗ need not equal zero, as covQ[g, µ] is not necessarily 0 under

H1A. Similarly, if H2o does not hold, then δ∗ need not equal zero. This behavior gives our tests their power. We emphasize

that in these cases, the optimizer m( · , ξ∗) generally does not coincide with µ, as m( · , ξ∗) is essentially a misspecified

approximation to µ under the specified alternatives.

3 Functional Ordinary Least Squares Estimation

We construct hypothesis testing procedures based on estimators for δ∗0 and δ∗. For this, we minimize with respect to δ0

and δ the sample analog of the Q−FMSE,

Qn(ξ) :=
1

n

n∑
i=1

∫
{Gi(γ)− δ0 − g(γ)′δ}2dQ(γ),

where ξ := (δ0, δ
′)′. The resulting estimator is the functional ordinary least squares (FOLS) estimator, denoted as

ξ̂n := (δ̂0n, δ̂
′
n)′. This has the convenient representation

ξ̂n :=

 δ̂0n

δ̂n

 :=

 1
∫

g∫
g
∫

g g′

−1  n−1
∑∫

Gi

n−1
∑∫

g Gi

 ,
where the integration is always with respect to dQ.
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3.1 Consistency of FOLS

The asymptotic properties of the FOLS estimator depend on the properties of Gi. We first require that n−1
∑n

i=1Gi

obeys the strong uniform law of large numbers (SULLN).

Assumption 5 (SULLN). supγ∈Γ

∣∣n−1
∑n

i=1Gi(γ)− µ(γ)
∣∣→ 0 a.s.−P. �

Given the domination condition of Assumption 3, this holds under mild additional conditions on {Gi}. Specifically, if

Gi(ω, · ) is continuous on Γ, then the SULLN of Le Cam (1953) (see also Jennrich, 1969) applies. Additional relevant

references are Andrews (1987), Pötscher and Prucha (1989), and Newey (1991).

The dominated convergence theorem (DCT) permits us to first let n tend to infinity before integrating the relevant

random functions with respect to Q involved in δ̂0n and δ̂n. The key assumptions permitting this are Assumptions 3 and

4(ii). With this, we obtain the consistency of the FOLS estimator.

Theorem 1. Given Assumptions 1, 2, 3, 4, and 5, ξ̂n → ξ∗ a.s. −P. �

3.2 Asymptotic Normality of FOLS Estimator

The FOLS estimator has the joint normal distribution asymptotically. For this, we impose a functional central limit

theorem (FCLT).

Assumption 6 (FCLT). (i) n−1/2
∑n

i=1(Gi− µ)⇒ Z , where Z : Ω×Γ 7→ R is a zero-mean Gaussian process such

that for γ, γ̃ ∈ Γ, EP[Z(γ)Z(γ̃)] = κ(γ, γ̃) <∞, where κ : Γ× Γ 7→ R is such that for each j, j̃ ∈ {1, 2, ..., k},

∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃) <∞,

∫ ∫
gj(γ)κ(γ, γ̃)dQ(γ)dQ(γ̃) <∞, and

∫ ∫
gj(γ)κ(γ, γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃) <∞; and

(ii) Let

B :=

 ∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃)

∫ ∫
κ(γ, γ̃)g(γ̃)dQ(γ)dQ(γ̃)∫ ∫

g(γ)κ(γ, γ̃)dQ(γ)dQ(γ̃)
∫ ∫

g(γ)κ(γ, γ̃)g(γ̃)dQ(γ)dQ(γ̃)

 ,
and suppose that λmin(B) > 0. �

There is an extensive literature providing primitive conditions for the FCLT. Billingsley (1999) provides primitive condi-

tions when Γ is a compact subset of the real line and Gi belongs to a set of right-continuous functions with left-limits.

These results are extended by Bickel and Wichura (1971) to the case where Γ is a compact subset of a finite dimensional

Euclidean space. When, as is assumed here, (Γ, ρ) is a compact metric space, Jain and Marcus (1975) provide sufficient
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conditions for the FCLT2. For additional literature developing these conditions under various contexts, see, for example,

Shorack and Wellner (1986) and van der Vaart and Wellner (1996).

By construction, κ(γ, γ̃) defines a measurable symmetric function. Many useful choices for g are bounded; in such

cases, only the first of the integrability conditions in Assumption 6(i) is needed. Further, Assumption 6(i) ensures that

λmax(B) < ∞. Assumption 6(ii) ensures that the asymptotic distribution of the FOLS estimator is not degenerate. For

example, Assumption 6(ii) fails if κ is constant over Γ× Γ. Constant κ occurs when Gi is a random constant function.

We can now give the asymptotic distribution of the FOLS estimator.

Theorem 2. Given Assumptions 1, 2, 3, 4, 5 and 6,
√
n(ξ̂n − ξ∗)

A∼ N
(
0,A−1BA−1

)
. �

The asymptotic normality ensured by this result makes it easy to construct tests of our hypotheses of interest.

Observe that the asymptotic covariance matrix has the sandwich form common to estimators of misspecified models

(see, e.g., Huber, 1967; White, 1982, 1994). Nevertheless, this matrix does not simplify further even under H1o or H2o

(where functional form misspecification is absent) because the functional data contain a stochastic dependence structure

captured by κ; this is the analog of neglected heteroskedasticity. We accept this in order to avoid undertaking the intensive

effort that would otherwise be required to model and accommodate κ.

3.3 Two-Stage FOLS Estimator

In applications, we often encounter situations in which an estimator Ĝi( · , γ) appears in place ofGi( · , γ). Our Examples

1 and 3 are relevant instances. To handle these cases in a general way, it suffices to assume that

Gi( · , γ) := G̃i( · , γ,θ∗)

for some suitably regular function G̃i, where θ∗ is an unknown m× 1 vector (m finite) in Θ, say. We then form

Ĝi( · , γ) := G̃i( · , γ, θ̂n),

where θ̂n is a suitable estimator of θ∗, computed in a first stage. From this, we can construct the two-stage FOLS

(TSFOLS) estimator

ξ̃n :=

 δ̃0n

δ̃n

 :=

 1
∫

g∫
g
∫

g g′

−1  n−1
∑∫

Ĝi

n−1
∑∫

Ĝi g

 .
When θ̂n is consistent for θ∗ and G̃i is mildly regular, the consistency of TSFOLS follows straightforwardly. In

addition, the asymptotic distribution of the TSFOLS estimator is obtained by accommodating the asymptotic distribution
2Jain and Marcus (1975) provide sufficient conditions for FCLT for random functions Gi with various properties. For example, their theorem 1

states that given our DGP conditions, if Gi is Lipschitz continuous on Γ a.s. −P, so that a.s. −P, for all γ, γ̃ ∈ Γ, |Gi(γ)−Gi(γ̃)| ≤ Kiρ(γ, γ̃)

for some Ki such that E[K2
i ] < ∞; and if for any ε ∈ (0, 1),

∫ ε
0
H

1/2
ρ (Γ, u)du < ∞, then the FCLT holds, where Hρ(Γ, u) := log[Nρ(Γ, u)],

and Nρ(Γ, u) is the minimal number of ρ−balls of radius less than or equal to u covering Γ.
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of the nuisance parameter estimator. To sketch the main ideas driving the asymptotic distribution result for TSFOLS, we

consider

1√
n

∑ ∫
Ĝi − µ∫

g (Ĝi − µ)

 =
1√
n

∑∫
g̃ (Ĝi − µ),

where g̃ := (1,g′)′. This is the analog of the term whose asymptotic distribution drives the result of Theorem 2 for

FOLS.

Writing the integral on the left more explicitly and taking a mean value expansion at θ∗ (interior to Θ) gives

1√
n

∑∫
g̃(γ)[G̃i( · , γ, θ̂n)− µ(γ)]dQ(γ)

=
1√
n

∑∫
g̃(γ)[G̃i( · , γ,θ∗)− µ(γ)]dQ(γ) +

1

n

∑∫
g̃(γ)[∇′θG̃i( · , γ, θ̄n,γ)]dQ(γ)

√
n(θ̂n − θ∗), (2)

where the mean value θ̄n,γ lies between θ̂n and θ∗ and, as indicated, depends on γ. With Gi( · , γ) := G̃i( · , γ,θ∗),

we recognize the first term as that arising for the simple FOLS estimator. The second term is new and may alter the

asymptotic distribution of TSFOLS from that of FOLS.

Under mild domination conditions, the first part of the second term converges:

1

n

∑∫
g̃(γ)[∇′θG̃i( · , γ, θ̄n,γ)] dQ(γ)→ D∗ :=

∫
g̃(γ) EP[∇′θG̃i( · , γ,θ∗)] dQ(γ) a.s.− P. (3)

The second part,
√
n(θ̂n − θ∗), generally converges in distribution.

When EP[∇θG̃i( · , γ,θ∗)] = 0 for all γ ∈ Γ, as can happen in important special cases, then D∗ = 0. It is then

enough that
√
n(θ̂n − θ∗) = OP(1) to ensure that

1√
n

∑∫
g̃(γ)[G̃i( · , γ, θ̂n)− µ(γ)] dQ(γ) =

1√
n

∑∫
g̃(γ)[Gi( · , γ)− µ(γ)] dQ(γ) + oP(1),

in which case TSFOLS and FOLS are asymptotically equivalent and thus have the same asymptotic covariance matrix.

When D∗ 6= 0, then some further mild assumptions deliver a straightforward result. Specifically, suppose that θ̂n

is asymptotically linear in the sense that
√
n[θ̂n − θ∗] = −H∗−1√ns∗n + oP(1), where H∗ is a nonstochastic finite

nonsingular m×m matrix and s∗n is an m× 1 random vector such that for some nonstochastic finite symmetric positive

semi-definitem×mmatrix I∗,
√
ns∗n

A∼ N (0, I∗). Many estimators used in practice are asymptotically linear. Examples

include QML, GMM estimators, and estimators based on U-statistics. In this case,

1√
n

∑∫
g̃(γ)[G̃i( · , γ, θ̂n)− µ(γ)] dQ(γ) =

1√
n

∑∫
g̃(γ)[Gi( · , γ)− µ(γ)] dQ(γ)−D∗H∗−1√ns∗n + oP (1),

and an asymptotic normality result follows straightforwardly under some mild conditions.
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We collect together additional conditions ensuring the validity of the above heuristic arguments as follows:

Assumption 7 (DGP-B). (i) Let Assumptions 1(i) and 2(i) hold, and let Θ ⊂ Rm,m ∈ N, be compact;

(ii) For i = 1, 2, ..., let G̃i : Ω×Γ×Θ 7→ R be such that for each θ ∈ Θ, G̃i( · , · ,θ) is measurable−F ⊗G and IID;

(iii) Θ is convect and for each (ω, γ) ∈ Ω× Γ,

(iii.a) G̃i(ω, γ, · ) is continuously differentiable on Θ;

(iii.b) sup(γ,θ)∈Γ×Θ |G̃i( · , γ,θ)| ≤Mi,; and

(iii.c) supj=1,...,m sup(γ,θ)∈Γ×Θ |(∂/∂θj)G̃i( · , γ,θ)| ≤Mi, i = 1, 2, .... �

Assumptions 7(i and ii) ensure that Assumptions 1 and 2 hold for Gi( · , γ) := G̃i( · , γ, θ∗), where θ∗ is formally

specified next. We use Assumption 7(iii) in proving consistency for the FOLS estimator, as well as in obtaining the

asymptotic distribution of statistics involving Ĝi.

Assumption 8 (Parameter Estimator-A). There exist θ∗ ∈ Θ and a sequence of measurable functions {θ̂n : Ω 7→ Θ}

such that

(i) θ̂n → θ∗ a.s.− P;

(ii) θ∗ ∈ int(Θ) and

(a) D∗ = 0 and
√
n(θ̂n − θ∗) = OP(1); or

(b) D∗ 6= 0 and there exist a nonstochastic finite nonsingular m ×m matrix H∗ and a sequence of measurable

random vectors {s∗n : Ω 7→ Rm} such that
√
n[θ̂n − θ∗] = −H∗−1√ns∗n + oP(1). �

Assumption 8(i) helps ensure the consistency of estimators involving Ĝi. Assumption 8(ii) plays a key role in obtaining

the asymptotic distribution of statistics involving Ĝi.

When Assumption 8(ii.b) applies, we require one further condition, ensuring the joint convergence of
√
ns∗n and

n−1/2
∑n

i=1(Gi − µ). This condition implies Assumption 6.

Assumption 9 (Joint Convergence-A). (i) For Gi( · , γ) := G̃i( · , γ,θ∗),

 √
ns∗n

n−1/2
∑n

i=1(Gi − µ)

⇒ Z :=

 Z0

Z

 ,
where Z : Ω× Γ 7→ Rm+1 is a mean zero Gaussian process such that for γ, γ̃ ∈ Γ,

EP[Z(γ)Z(γ̃)′] =

 I∗ κ0(γ̃)

κ0(γ)′ κ(γ, γ̃)

 ,
where I∗ is a nonstochastic finite symmetric positive semi-definite m×m matrix; κ0 : Γ 7→ Rm belongs to L2(Q);

and κ is as in Assumption 6; and
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(ii) λmin(B∗) > 0, where we let B∗ := B − D∗H∗−1K∗ − K∗′H∗−1′D∗′ + D∗H∗−1I∗H∗−1′D∗′ and K∗ :=∫
κ0(γ)g̃(γ)′dQ(γ). �

Observe that when D∗ = 0, we have B∗ = B.

The consistency result for the TSFOLS estimator is

Theorem 3. Given Assumptions 3, 4, 5, 7, and 8(i) for Gi( · , γ) := G̃i( · , γ,θ∗), ξ̃n → ξ∗ a.s. −P. �

The asymptotic normality result for the TSFOLS estimator is

Theorem 4. Given Assumptions 3, 4, 5, 6, 7, and 8(i) for Gi( · , γ) := G̃i( · , γ,θ∗),

(i) if Assumption 8(ii.a) also holds, then
√
n(ξ̃n − ξ∗)

A∼ N
(
0,A−1BA−1

)
.

(ii) If Assumptions 8(ii.b) and 9 also hold, then
√
n(ξ̃n − ξ∗)

A∼ N
(
0,A−1B∗A−1

)
. �

Note that the asymptotic behaviors of the FOLS and TSFOLS estimators are established without supposing continuous

functional observations unlike Cho et al. (2021).

3.4 Consistent Asymptotic Covariance Matrix Estimation

A consistent estimator of the FOLS asymptotic covariance matrix is A−1B̂nA
−1, where B̂n is a consistent estimator for

B. Unlike the situation for standard regression estimation, we do not need to estimate A in this context, as it is known.

Let the functional regression estimated residuals ε̂in : Ω× Γ 7→ R be defined by

ε̂in( · , γ) := Gi( · , γ)− δ̂0n − g(γ)′δ̂n.

For convenience, we write ε̂in(γ) as a shorthand for ε̂in( · , γ). We consider estimators of the form

B̂n :=
1

n

n∑
i=1

 ∫ ∫
ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃)

∫ ∫
ε̂in(γ)ε̂in(γ̃)g(γ̃)′dQ(γ)dQ(γ̃)∫ ∫

g(γ)ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃)
∫ ∫

g(γ)ε̂in(γ)ε̂in(γ̃)g(γ̃)′dQ(γ)dQ(γ̃)

 .
To ensure the consistency of this estimator, we add the following assumption:

Assumption 10 (FOLS Covariance Matrix Estimation). sup(γ,γ̃)∈Γ×Γ

∣∣n−1
∑n

i=1Gi(γ)Gi(γ̃)− EP[Gi(γ)Gi(γ̃)]
∣∣→ 0

a.s. −P. �

If we take all of these conditions together, Assumptions 1, 2, 3, 4, 5, 6, and 10 are the functional regression analogs

of conditions for heteroskedasticity-consistent covariance estimation (cf. White, 2001, ch.6). Formally, we have

Theorem 5. Given Assumptions 1, 2, 3, 4, 5, 6, and 10, B̂n → B a.s.− P. �
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For the TSFOLS estimator, we use the second-stage residuals ε̃in : Ω× Γ 7→ R defined by

ε̃in( · , γ) := Ĝi( · , γ)− δ̃0n − g(γ)′δ̃n.

When TSFOLS and FOLS are asymptotically equivalent, we simply replace ε̂in with ε̃in in the formula for B̂n above,

and denote this as B̃n. Otherwise, we construct the estimator

B̃∗n := B̃n − D̃nĤ
−1
n K̃n − K̃n

′Ĥ′−1
n D̃′n + D̃nĤ

−1
n ÎnĤ

′−1
n D̃′n,

where we let

D̃n :=
1

n

n∑
i=1

∫
g̃(γ) ∇′θG̃i( · , γ, θ̂n) dQ(γ), K̃n :=

1

n

n∑
i=1

∫
si( · , θ̂n)ε̃in( · , γ)g̃(γ)′ dQ(γ), and

În :=
1

n

n∑
i=1

si( · , θ̂n)si( · , θ̂n)′

such that si : Ω × Θ 7→ Rm,
√
ns∗n = n−1/2

∑n
i=1 si( · ,θ∗) + oP(1), and Ĥn is a consistent estimator of H∗. For

example, Ĥn = n−1
∑n

i=1∇θsi( · , θ̂n).

We provide further conditions ensuring the consistency of B̃n and B̃∗n as follows:

Assumption 11 (Joint Convergence-B). (i) For i = 1, 2, ..., there exists si : Ω×Θ 7→ Rm such that

(i.a) si( · ,θ) is measurable−F for each θ ∈ Θ and si(ω, · ) is continuous on Θ for all ω ∈ F ∈ F , P(F ) =

1;
√
ns∗n = n−1/2

∑n
i=1 si( · ,θ∗) + oP(1); and

(i.b) În → I∗ a.s.− P; and

(ii) For n = 1, 2, ..., there exists Ĥn : Ω 7→ Rm×m such that Ĥn is measurable−F and Ĥn→ H∗ a.s.− P. �

Assumption 12 (TSFOLS Covariance Matrix Estimation).

(i) sup(γ,γ̃,θ)∈Γ×Γ×Θ

∣∣∣n−1
∑
G̃i(γ,θ)G̃i(γ̃,θ)− EP[G̃i(γ,θ)G̃i(γ̃,θ)]

∣∣∣→ 0 a.s.−P;

(ii) For each γ ∈ Γ, supθ∈Θ

∣∣∣n−1
∑
si(θ)G̃i(γ,θ)− EP[si(θ)G̃i(γ,θ)]

∣∣∣→ 0 a.s.−P. �

Note that Assumption 12(i) implies Assumption 10, because Gi( · , γ) := G̃i( · , γ,θ∗). Assumption 12(ii) helps ensure

the consistency of K̃n.

We can now state the desired consistency results:

Theorem 6. (i) Given Assumptions 3, 4, 5 for Gi( · , γ) := G̃i( · , γ,θ∗), 7, 8(i), and 12(i), B̃n → B a.s. −P;

(ii) Given Assumptions 3, 4, 5 for Gi( · , γ) := G̃i( · , γ,θ∗), 7, 8, 9, 11, and 12, B̃∗n → B∗ a.s. −P. �
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4 Hypothesis Testing

In this section, we describe the properties of Wald tests for our hypotheses of interest, H1o and H2o.We consider behavior

under the null and global alternative hypotheses, as well as behavior under natural local alternatives. Because of the foun-

dations provided by the previous sections, our next results follow as straightforward applications of standard arguments.

It is necessary, however, to exercise care in specifying the null and alternative hypotheses.

4.1 The Wald Test under Null and Global Alternative Hypotheses

To construct Wald tests for our hypotheses of interest, H1o and H2o, we define selection matrices S1 := Ik+1 and

S2 := [0k, Ik], where Ik+1 is the identity matrix of order k + 1 and 0k is the k × 1 vector of zeros. As discussed above,

H1o and H2o respectively imply

H1o(g) : S1ξ
∗ = 0k+1 and H2o(g) : S2ξ

∗ = 0k.

The indicated dependence on g reflects the fact that these hypotheses are implications of H1o and H2o. They generally

are not identical to H1o and H2o, as, e.g., H1o(g) could hold, even if H1o fails.

We express the global alternatives as

H1A(g) : S1ξ
∗ 6= 0k+1 and H2A(g) : S2ξ

∗ 6= 0k.

Note that these are not equivalent to H1A and H2A, respectively, due to the possibility of misspecification of the form

of the functional regression under the alternative, as described above. We exhibit the explicit dependence of the global

alternatives on g to reflect this possibility.

Wald statistics for testing H1o(g) and H2o(g) based on the FOLS estimator are

Wj,n := nξ̂′nS
′
j

[
SjA

−1B̂nA
−1S′j

]−1
Sj ξ̂n, j = 1, 2.

Wald statistics for testing H1o(g) and H2o(g) based on the TSFOLS estimator and using B̃n are

W̃j,n := nξ̃′nS
′
j

[
SjA

−1B̃nA
−1S′j

]−1
Sj ξ̃n, j = 1, 2.

Wald statistics for testing H1o(g) and H2o(g) based on the TSFOLS estimator and using B̃∗n are

W∗j,n := nξ̃′nS
′
j

[
SjA

−1B̃∗nA
−1S′j

]−1
Sj ξ̃n, j = 1, 2.

The following results are now completely standard. We let X 2
k denote the standard chi-square distribution with k
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degrees of freedom.

Theorem 7. (i) Given the conditions of Theorems 2 and 5, for j = 1, 2,

(a) under Hjo(g),Wj,n
A∼ X 2

k+2−j ;

(b) under HjA(g), P[Wj,n ≥ cn]→ 1 for any sequence {cn} s.t. cn = o(n);

(ii) Given the conditions of Theorems 4(i) and 6(i), for j = 1, 2,

(a) under Hjo(g), W̃j,n
A∼ X 2

k+2−j ;

(b) under HjA(g), P[W̃j,n ≥ cn]→ 1 for any sequence {cn} s.t. cn = o(n); and

(iii) Given the conditions of Theorem 4(ii) and 6(ii), for j = 1, 2,

(a) under Hjo(g),W∗j,n
A∼ X 2

k+2−j ;

(b) under HjA(g), P[W∗j,n ≥ cn]→ 1 for any sequence {cn} s.t. cn = o(n). �

4.2 The Wald Test under Local Alternatives

We consider local alternatives of the following form: {µn} is such that for some ςj ,

Hja(g) :
√
nSjξ

∗
n → ςj , j = 1, 2,

where

ξ∗n :=

 δ∗0n

δ∗n

 :=

 EQ[µn]

0

+

 −EQ[ g ]′covQ[g,g]−1covQ[g, µn]

covQ[g,g]−1covQ[g, µn]

 .
The required evolution of µn can arise from evolution of eitherGi (becomingGin) or P (becoming Pn).As the former

yields less fundamental and fairly direct modifications to the underlying regularity conditions, we adopt that approach.

For brevity, however, we omit restating all the affected conditions (Assumptions 1(ii) , 2(ii), 3, 5 (that is more easily

verified as a weak ULLN for triangular arrays), 6, 7(ii, iii), 8 (with weak rather than strong convergence to D∗), 9, 10, 11,

and 12 (with weak convergence)). Instead, we understand implicitly that any of these conditions referenced in the next

result are replaced with their suitable analogs involving Gin.

The next results are again standard. We let X 2(k, τ) denote the noncentral chi-square distribution with k degrees of

freedom and noncentrality parameter τ. The following noncentrality parameters are relevant for j = 1, 2:

τj := ς ′j [SjA
−1BA−1S′j ]

−1ςj ; and τ∗j := ς ′j [SjA
−1B∗A−1S′j ]

−1ςj .

Theorem 8. (i) Given the conditions of Theorems 2 and 5, for j = 1, 2, under Hja(g),Wj,n
A∼ X 2(k + 2− j, τj);

(ii) Given the conditions of Theorems 4(i) and 6(i), for j = 1, 2, under Hja(g), W̃j,n
A∼ X 2(k + 2− j, τj); and

(iii) Given the conditions of Theorems 4(ii) and 6(ii), for j = 1, 2, under Hja(g),W∗j,n
A∼ X 2(k + 2− j, τ∗j ). �
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5 Examples

We illustrate the application of the foregoing results by returning to our examples of Section 2.

Example 1 (Panel Random Effects–Continued): Recall that interest attaches to Gi(γ) = Vi(1)Vi(γ), and to testing

H1o. Because the Vi’s are unknown, we use a TSFOLS procedure. Specifically, we work with Ĝi(γ) = V̂i(1)V̂i(γ),

where V̂i(γ) := Ṽi(γ, β̂n) = Yi(γ)−Xi(γ)′β̂n, and β̂n is the pooled OLS estimator,

β̂n :=

 n∑
i=1

T∑
γ=1

Xi(γ)Xi(γ)′

−1 n∑
i=1

T∑
γ=1

Xi(γ)Yi(γ)

 .

To determine which asymptotic covariance matrix applies in this case, we investigate D∗ :=
∫

g̃(γ)EP[∇′βG̃i( · , γ,

β∗)]dQ(γ). Now, we note that (∂/∂βj)G̃i( · , γ, β∗) = [(∂/∂βj)Ṽi(1, β
∗)]Ṽi(γ, β

∗) + Ṽi(1, β
∗)[(∂/∂βj)Ṽi(γ, β

∗)] =

−Xij(1)Vi(γ) − Vi(1)Xij(γ). Under pure random effects (σ2
c = 0), it then follows that for all γ ∈ {2, ..., T},

EP[∇′βG̃i( · , γ, β∗)] = 0. In this case, the first-stage estimation has no effect on the asymptotic covariance matrix,

and we can test for panel random effect assumption using W̃1,n for any desired choice of g and Q. For example, we may

let g(γ) = g1(γ) = γ. The TSFOLS estimator minimizes

0.5

n(T − 1)

n∑
i=1

T∑
γ=2

{V̂i(1)V̂i(γ)− δ0 − δg1(γ)}2.

Letting
∑

γ =
∑T

γ=2, the matrices A and B are given by

A =
1

(T − 1)

 T − 1
∑

γ g1(γ)∑
γ g1(γ)

∑
γ g1(γ)2

 and B =
1

(T − 1)2

∑
γ

∑
γ̃

 κ(γ, γ̃) κ(γ, γ̃)g1(γ̃)

g1(γ)κ(γ, γ̃) g1(γ)κ(γ, γ̃)g1(γ̃)

 ,
where

κ(γ, γ̃) :=

 E[C4
i ] + 2σ2

cσ
2
u + σ4

u − σ4
c , if γ = γ̃;

E[C4
i ] + σ2

cσ
2
u − σ4

c , otherwise.

The conditions of Theorem 6(i) apply to deliver the consistency of B̃n for B. �

Example 2 (Specification Testing–Continued): For specificity, suppose that d = 2, Xi := (Xi1, Xi2)′ := (1, X2i)
′ and

that EP[Yi|Xi] = π∗ exp(X2i). Next, take f(X,θ) = θ1 + θ2X2, so that M is correctly specified for EP[Yi|Xi] only

when π∗ = 0.

Finally, take ψ to be the logistic function, ψ(z) = 1/[1 + exp(−z)], let γ ∈ Γ := [γ, γ̄], and let Q be the uniform

distribution on Γ. These specification tests require a first stage estimator, so our results for the TSFOLS estimator will
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apply. Given the linear structure of M, we take θ̂n := (θ̂1n, θ̂2n)′ to be the OLS estimator. We thus work with

Ĝi(γ) = [Yi − θ̂1n − θ̂2nX2i]ψ(X2iγ).

The TSFOLS estimator is obtained by choosing δ̃0n and δ̃n to minimize

Q̂n(ξ) :=
1

n

n∑
i=1

1

(γ̄ − γ)

∫ γ̄

γ
{Ĝi(γ)− δ0 − g(γ)′δ}2dγ,

where g is suitably chosen function.

The theory of the foregoing sections for TSFOLS applies directly. To determine which version of the TSFOLS

asymptotic covariance matrix is required, we investigate D∗ :=
∫

g̃(γ)EP[∇′θG̃i( · , γ,θ∗)] dQ(γ) = (γ̄ − γ)−1
∫ γ̄
γ g̃(γ)

EP[(−1,−X2)ψ(X2γ)]dγ. Inspecting this, we do not see that it vanishes in general, so we must estimate B∗ to compute

our test statistic. This estimation involves computation of

D̃n = (γ̄ − γ)−1 1

n

n∑
i=1

∫ γ̄

γ
g̃(γ)(−1,−X2i)ψ(X2iγ)dγ, K̃n = (γ̄ − γ)−1 1

n

n∑
i=1

∫ γ̄

γ
si( · , θ̂n)ε̃in( · , γ)g̃(γ)′dγ,

În =
1

n

n∑
i=1

si( · , θ̂n)si( · , θ̂n)′, and Ĥn =
1

n

n∑
i=1

 −1

−X2i

 [−1,−X2i],

where

si( · , θ̂n) =

 −1

−X2i

 [Yi − θ̂1n − θ̂2nX2i], and ε̃in( · , γ) = Ĝi(γ)− δ̃0n − g(γ)′δ̃n.

Here the relevant hypothesis is the hypothesis of correct specification, corresponding to H1o. We thus computeW∗1,n as

specified above.

To examine further features of our test, suppose that we knew that the DGP exhibits conditional heteroskedasticity,

such that Ui = h(X2i)εi, where Ui := Yi − EP[Yi|Xi], where h(x) = sin(x), and εi is IID with EP(εi|Xi2) = 0 and

EP(ε2
i |Xi2) = 1, and that (X2i, εi)

′ ∼ IID N((1, 0)′, I2). Applying theorem 3 of Bierens (1990) tells us that under H1o,

n−1/2
∑n

i=1 Ĝi ⇒ Z, a zero mean Gaussian process having the covariance structure

κ(γ, γ̃) = EP[sin(X2)2(ψ(X2γ)−X ′EP[XX ′]−1EP[Xψ(X2γ)])(ψ(X2γ̃)−X ′EP[XX ′]−1EP[Xψ(X2γ̃)])].

The complexity of this structure makes it difficult to exploit, even under the best circumstances, where we have detailed

knowledge of the DGP. In applications, matters are worse as h and the unconditional distribution of Xi are typically

unknown a priori. Fortunately, however, our approach here does not require explicitly taking into account the structure of

κ, just as tests based on a heteroskedasticity-robust estimator do not require explicitly taking into account the unknown
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heteroskedasticity.

The tests suggested by Bierens (1990) and SW rely on statistics computed as functionals of

1√
n

∑
Ĝi(γ) =

1√
n

∑
[Yi − θ̂1n − θ̂2nX2i]ψ(X2iγ).

These statistics have asymptotic distributions that are generally highly complex, varying for different choices of ψ and

for different choice of functional. This distribution typically must be simulated in each case, requiring considerable

computational effort in computing the critical values; or a special functional has to be selected to obtain a statistic with

asymptotically standard null distribution, as pointed out by Bierens (1990). The benefit of the approach taken here is that

our test statistics always have a straightforward asymptotic chi-square distribution regardless of ψ, g, or Q. �

6 Numerical Analysis

In this section, we conduct Monte Carlo experiments using our Wald tests with the DGPs specified in the previous

examples. First, we investigate the behavior of functional regression tests for panel data random effects and compare

these to Breusch and Pagan’s (1979) test. As the panel setting is standard and familiar, these results are intended

primarily to illustrate how this familiar setting maps to the functional regression framework, rather than to yield new

insights for panel data. Second, we compare the specification tests of Bierens (1990) and SW to our functional regression

Wald tests. Here, functional regression offers not only computational convenience, but we also observe some interesting

power advantages. Finally, we apply our methodology to empirical data by testing whether popularly assumed models

for voting turnout are correctly specified or not.

6.1 Simulation Example 1: Panel Random Effects

For the panel random effects example, let d = 2 and T = 20, so that j ∈ {1, 2} and γ ∈ {1, 2, ..., T} for i ∈ {1, 2, ..., n}.

Let Xji(γ) be IID X 2
1 , and let Ui(γ) be such that Ui(γ) + 3 ∼ IID X 2

3 . Thus, for each γ, E[Ui(γ)] = 0, and the Ui(γ)’s

have a non-normal distribution.

As discussed above, the choice of g is up to the researcher. Here we consider five different possibilities. The simplest

choice omits g entirely, and simply tests for a zero intercept, coinciding with a standard QML procedure. The remaining

choices are linear (g1(γ) = γ), quadratic (g1(γ) = γ2), linear-quadratic (g1(γ) = γ, g2(γ) = γ2), and geometric

(g1(γ) = 0.5γ). The latter choice is one a researcher might make if autocorrelation in the Ui(γ)’s were suspected. We

make these choices primarily because of their simplicity. Nevertheless, under the alternative in which σ2
c > 0, µ is just

a constant function different from zero. This implies that the functional regression coefficients for the elements of g will

be zero; including g will thus result in some loss of power. Our experiments with g included permit us to assess this loss.

We denote the Wald statistics for these choices as W̃1,n(con), W̃1,n(con+lin), W̃1,n(con+quad), W̃1,n(con+lin+quad),
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and W̃1,n(con+0.5γ), respectively.

We also apply Breusch and Pagan’s (1979) statistic to test the null of pure random effects structure. This statistic is

popularly used to test for unobserved fixed effects, as noted by Wooldridge (2010) and can be written as

BPn :=


∑n

i=1

∑T
γ=2 V̂i(1)V̂i(γ)√∑n

i=1{
∑T

γ=2 V̂i(1)V̂i(γ)}2


2

in our context. Under the null, σ2
c = 0 and there is no correlation between Ĝi(γ) and Ĝi(γ̃) when γ 6= γ̃. Thus, BPn

follows the chi-square distribution with one degree of freedom. On the other hand, the alternative σ2
c > 0 leads to serial

correlation, so that BPn yields a consistent test.

Tables 1 and 2 display the simulation results for level (10,000 replications) and power (5,000 replications), respec-

tively. We examine power patterns by varying the sample size and the values of σ2
c for the alternatives. As expected, the

levels of the Wald statistics are well behaved. BPn also shows good level behavior. Both W̃1,n(con) and BPn have com-

parable power, with W̃1,n(con) having perhaps a small advantage. As expected, the inclusion of the additional regressors

generally leads to modest losses in power, with (as expected) greater losses for W̃1,n(con+lin+quad), that uses three

degrees of freedom, than for the others, that use only two degrees of freedom. Although these power losses are modest,

these results underscore the importance of using knowledge about the alternative to arrive at a parsimonious functional

regression.

6.2 Simulation Example 2: Specification Testing

To test the hypotheses H1o(g) vs. H1A(g) for the specification tests of Example 2, we again consider the case of functional

regression with a constant only, together with the linear, quadratic, and linear-quadratic cases. We denote the Wald

statistics for these cases asW∗1,n(con), W∗1,n(con+lin), W∗1,n(con+quad), andW∗1,n(con+lin+quad), respectively. As in

Example 2, the associated integrals are computed using Gauss-Legendre quadrature, now letting Γ = [γ, γ̄] = [−0.5, 0.5]

with ψ the logistic function, as before.

In addition, we compute test statistics suggested by Bierens (1990) and SW, letting Bn and SWn denote the Bierens

and SW test statistics, respectively. For Bn, we follow theorem 4 of Bierens (1990) and let γ = 1, ρ = 0.5, and t0 = 1/4.

These parameters must be selected by the researcher before conducting the Bierens test and are those used by (Bierens,

1990, table 1) for his own Monte Carlo experiments. For comparability, we again take ψ to be the logistic function.

Because of the particular structure imposed here, Bn is distributed asymptotically as X 2
1 under the null.

SW give a simple consistent test procedure using critical values based on the law of the iterated logarithm (LIL)

bound. This is quite conservative, as SW point out. We follow their theorem 5.6(a) and let the associated norm be

the uniform norm, with ψ again chosen to be the logistic function. SW’s LIL procedure yields a test for which the

level declines to zero as n increases. For comparability, we scale the LIL-based critical value to yield a level of 5% for
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n = 100. For n = 100, the ratio between the LIL-based critical value and the quantile yielding a 5% empirical rejection

is 2.2405. We then multiply the other LIL-based critical values for the different sample sizes by this ratio.

Tables 3 and 4 present simulation results for level (10,000 replications) and power (5,000 replications). In Table 3,

we see that the Wald tests and Bn have approximately correct levels. As the sample size increases, the levels appear to

converge to their nominal values. As expected, the level for SWn decreases with n.

In Table 4, we examine power by varying the sample size and the coefficient π∗ (recall that above we specified

E[Yi|Xi] = π∗ exp(X2i)). First, we again see very strong performance for tests based on W∗1,n(con). Nevertheless,

jointly including linear and quadratic functions of γ in the functional regression (using W∗1,n(con+lin+quad)) is now

seen to pay off, especially for all but the smaller values of π∗, with relative improvement most noticeable for the smaller

sample sizes. We note that results forW∗1,n(con+lin) andW∗1,n(con+quad) are similar to each other and are not as good

as those forW∗1,n(con+lin+quad).

Interestingly, we find thatW∗1,n(con) strongly dominates Bn, especially for smaller values of π∗. For n ≥ 100 (where

levels are comparable) we also see the conservative SWn test dominating Bn. For these sample sizes, SWn performs

comparably toW∗1,n(con) andW∗1,n(con+lin+quad). Nevertheless, the utility of the SWn statistic is limited by the need

to find a practical way to control its level.

Overall, these results demonstrate the appeal of the functional regression Wald tests for specification testing. Not

only are they easy to apply because of their standard chi-square asymptotic distribution, but they can have power as good

or better than previous procedures, such as tests based on Bn or SWn.

6.3 Empirical Application

In the political science literature, a classic research topic is to explain voting turnout. For example, in Wolfinger and

Resenstone’s (1980) seminar work, they estimate a probit model using 1972 presidential election in the US. In addition

to this, many empirical researches are conducted to explain voting turnout using empirical data (e.g., Nagler, 1991, 1994;

Bénabou, 2000; Besley and Case, 2003; Berry, DeMeritt, and Esarley, 2010, etc.).

Wolfinger and Resenstone’s (1980) empirical model is influential to the literature as it shows the influence of educa-

tion to voting turnout. Specifically, using education level (Education), squared education level (Education2), age (Age),

squared age (Age2), a dummy for the South (South), a dummy for the presence of a gubernatorial election in the state

(Gubernatorial Election), and the number of days before the election that registration close (Closing Date) for the ex-

planatory variable, they estimate a linear probit model and assert that the registration requirement by the voting law most

severely affects the least educated group. In their model, Closing date is used to measure the voting law requirement,

and the estimation shows that if Closing Date is hypothetically set as zero, the average voting turnout most increases for

the least educated group, whereas the most educated voters’ turnout increase is smallest. Using the notion of voting cost,

they explain that more educated voters pay less cost for understanding the implications of complex and abstract political

21



issues. This finding is regarded as a stylized fact in the political science literature.

Nagler (1991) criticizes that Wolfinger and Resenstone’s (1980) empirical result is an output of using the probit

model. The probit probability is highly affected if the explanatory variable is around zero, so that if Education is near

zero, the predicted probability increase is greater than other voters with higher education. Nagler (1991) remedies this

problem by estimating another probit model with two additional explanatory variables: Closing Date × Education and

Closing Date × Education2. By including them, he captures the interactive effects of Closing Date and Education to the

turnout. Using 1972 and 1984 presidential election data in the US, Nagler (1991) rejects Wolfinger and Resenstone’s

(1980) empirical result.

Nevertheless, we note that both models specified by Wolfinger and Resenstone (1980) and Nagler (1991) could be

misspecified, invalidating their model interpretations. We therefore test whether the models are correctly specified or not

using a specification testing procedure that applies the methodology in Section 6.2. Specifically, we follow the following

procedure: First, we estimate the two models by the QML estimation by supposing that their probit models are possibly

misspecified and using 1984 presidential election data of the US that are provided by Altman and McDonald (2003). We

let Xi be the conditioning variable for Yi such that Yi = 1 if the i-th individual votes, and Yi = 0, otherwise. Note

that if for some θ∗, E[Yt|Xt] = Φ(X′tθ∗), then the model is correctly specified, so that estimating θ∗ by the QML

estimation is identical to maximum likelihood (ML) estimation, where Φ(·) is the cumulative distribution function (CDF)

of a standard normal random variable. Otherwise, the probit model is misspecified and the QML estimation differs from

the ML estimation, so that the information matrix equality does not hold. For such a case, θ∗ is the probability limit of

the QML estimator, and it follows that
√
n(θ̂n − θ∗)

A∼ N(0,H−1IH−1), where H (resp. I) is the limit of negative

Hessian log-likelihood function (resp. the covariance matrix of the quasi-score) that is evaluated at the QML estimator.

Nevertheless, we also note that the QML estimation can still estimate E[Yt|Xt] consistently despite the distributional

misspecification (e.g., Gourieroux et al., 1984; White, 1994). By this, we can apply the QML estimation to correct model

specification for E[Yt|Xt].

Second, we apply the testing methodology in Section 6.2 to the two probit models specified by Wolfinger and Resen-

stone (1980) and Nagler (1991) and test correct model specification for E[Yt|Xt]. Specifically, we first let

Ĝi(γ) := [Yi − Φ(X′iθn)]ψ(Ziγ) and Q̂n(ξ) :=
1

n

n∑
i=1

1

(γ̄ − γ)

∫ γ̄

γ
{Ĝi(γ)− δ0 − g(γ)δ}2dγ,

where Γ := [γ, γ̄] = [−1, 1], and Zi is one of the conditioning variables. We choose one out of Closing Date, Education,

and Age for Zt. The other conditioning variables in Xi are dummies, so that they are not effective for the goal of our

testing. We further select either γ or γ2 for g(γ), and either exponential or logistic function is selected for ψ. After

estimating δ0 and δ by FOLS, we apply the Wald test principle according to the procedure in Section 6.2.

The empirical estimation and inference outputs are contained in Tables 5 and 6. We summarize the empirical results

as follows. First, the QML estimations are contained in Table 5. The probit models without and with interactive terms are
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the ones specified by Wolfinger and Resenstone (1980) and Nagler (1991), respectively. Berry et al. (2010) also estimate

the same models, and all the parameter estimates in Table 5 are the same as theirs. The only difference is that the p-values

of the t-tests given in parentheses are computed by the robust standard error.

Second, the testing results are contained in Table 6 that shows the Wald tests and their respective p-values in parenthe-

ses. As we can see from the table, the inference results are different between the probit models with and without products.

For the probit model without products, viz., Wolfinger and Resenstone’s (1980) model, the p-values of the Wald tests

are significantly close to zero only when Zi = Education. In particular, when g(γ) = γ2, the p-values ar close to zero

for both exponential and logistic functions. This fact strongly implies that Wolfinger and Resenstone’s (1980) probit

model for the voting turnout data is misspecified. For the probit model with products, viz., Nagler’s (1991) model, the

p-values of the Wald tests are significantly different from zero only when Zi = Age. In particular, if Zi = Closing Date,

the p-values are close to zero when the exponential function is selected for ψ(·). This fact strongly implies that the probit

model posited by Nagler (1991) for the voting turnout data is also misspecified.

7 Conclusion

In this paper, we study functional regression and its properties in testing the hypothesis of a constant zero mean function

or an unknown constant non-zero mean function by applying the approach in Cho, Phillips, and Seo (2021). As we show,

the associated Wald test statistics have standard chi-square limiting null distributions, standard non-central chi-square

distributions for local alternatives converging to zero at a
√
n rate, and are consistent against global alternatives. These

properties permit the construction of straightforward tests of the hypotheses of interest.

As we discuss, panel data can be viewed as functional data; we illustrate this with a running example focusing on

a test of random effects structure. In particular, we develop new alternatives to tests for regression misspecification,

both of which involve nuisance parameters identified only under the alternative. We find that our procedures can have

power better than existing methods that do not exploit this covariance structure, like the specification testing procedures

of Bierens (1982, 1990) or SW. Interestingly, we find that functional regression tests including only a constant have

remarkably good power, even when the functional mean depends non-trivially on its parameter. This suggests that any

battery of tests for a zero mean function should include tests based on the intercept only, and that tests including additional

functions of the parameter should be judiciously constructed. In addition, we empirically test whether popularly assumed

models for voting turnout are correctly specified or not by using 1984 presidential election data of the US, finding that

the probit models specified by Wolfinger and Resenstone (1980) and Nagler (1991) are misspecified.

Finally, we note that functional regression tests may have utility in a variety of disparate contexts involving hypothesis

testing with multiple statistics. For example, Tippett (1931), Fisher (1932), Pearson (1950), Lancaster (1961), van Zwet

and Oosterhoff (1967), Westberg (1985), and the references therein consider combining a finite number of multiple

statistics using a specified weighting method or a Bayes method. Our approach accommodates such methods, allowing
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dependence among multiple statistics. It further allows not just a finite number of tests, but allows the tests to be indexed

by elements of a multidimensional continuum.

8 Appendix: Proofs

Proof of Theorem 1: The given consistency easily follows by applying the DCT given Assumptions 3, 4, and 5. We note

that Assumption 3 implies that∣∣∣∣∣
n∑
i=1

Gi

∣∣∣∣∣ ≤
n∑
i=1

G2
i ≤

n∑
i=1

M2
i <∞ a.s. − P and

∣∣∣∣∣
n∑
i=1

Gigj

∣∣∣∣∣ ≤
n∑
i=1

G2
i g

2
j ≤

n∑
i=1

M2
i g

2
j

for every j, so that

∫ ∣∣∣∣∣n−1
n∑
i=1

Gi

∣∣∣∣∣ dQ < n−1
n∑
i=1

M2
i <∞ and

∫ ∣∣∣∣∣n−1
n∑
i=1

Gigj

∣∣∣∣∣ dQ ≤ n−1
n∑
i=1

M2
i

∫
g2
jdQ <∞

a.s. −P, as gj ∈ L2(Q) by 4(ii). This implies that we can first let n tend to infinity before integrating the associated

random functions, so that

 n−1
∑∫

Gi −
∫
µ

n−1
∑∫

Gig −
∫
µg

 =

 ∫
n−1

∑
Gi −

∫
µ∫

n−1
∑
Gig −

∫
µg

→
 0

0

 a.s. − P,

where the given convergence follows from 5. Thus, we obtain that

ξ̂n :=

 δ̂0n

δ̂n

 :=

 1
∫

g∫
g
∫

g g′

−1  n−1
∑∫

Gi

n−1
∑∫

Gi g

→
 1

∫
g∫

g
∫

g g′

−1  ∫
µ∫
µg

 =:

 δ∗0

δ∗

 =: ξ∗

a.s. −P. �

Proof of Theorem 2: From the note that

√
n(ξ̂n − ξ∗) =

 1
∫

g∫
g
∫

g g′

−1  n−1/2
∑∫

(Gi − µ)

n−1/2
∑∫

(Gi − µ) g

 ,
the desired result follows if  n−1/2

∑∫
(Gi − µ)

n−1/2
∑∫

(Gi − µ) g

 A∼ N (0,B) , (4)

the desired result follows. Assumption 6(ii) implies that n−1/2
∑

(Gi−µ)⇒ G, so that we obtain n−1/2
∑∫

(Gi−µ)⇒∫
G, and for each j ∈ {1, 2, . . . , k},

∫
(Gi − µ)gj ⇒

∫
Ggj by the continuous mapping theorem. Also, we note that

∫
G
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and
∫
Ggj (j ∈ {1, 2, . . . , k}) are the integrals of Gaussian processes, so that they are normally distributed with

∫
G ∼ N

(
0,

∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃)

)
and

∫
Ggj ∼ N

(
0,

∫ ∫
gj(γ)κ(γ, γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

)
, (5)

where the given variances are computed by applying theorem 2 of (Grenander, 1981, p. 48). Given this, the positive

definite matrix B in Assumption 6(iii) enables us to apply the Cramér-Wold’s device, that we omit for brevity. This

completes the proof. �

Proof of Theorem 3: The given consistency can be achieved in a parallel manner to that of Theorem 1. We note that

Assumption 7(ii) implies that∣∣∣∣∣
n∑
i=1

G̃i

∣∣∣∣∣ ≤
n∑
i=1

G̃2
i ≤

n∑
i=1

M2
i <∞ a.s. − P and

∣∣∣∣∣
n∑
i=1

G̃igj

∣∣∣∣∣ ≤
n∑
i=1

G̃2
i g

2
j ≤

n∑
i=1

M2
i g

2
j

for every j, so that

∫ ∣∣∣∣∣n−1
n∑
i=1

G̃i

∣∣∣∣∣ dQ < n−1
n∑
i=1

M2
i <∞ and

∫ ∣∣∣∣∣n−1
n∑
i=1

G̃igj

∣∣∣∣∣ dQ ≤ n−1
n∑
i=1

M2
i

∫
g2
jdQ <∞

a.s. −P, as gj ∈ L2(Q) by Assumption 4(ii). This implies that we can apply DCT, so that
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The given convergence mainly follows from the facts that: (a)

sup
γ∈Γ

∣∣∣∣∣ 1n
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Ĝi(γ)− µ

∣∣∣∣∣ ≤ sup
γ∈Γ

∣∣∣∣∣ 1n
n∑
i=1
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(b) the second element on the right-hand side (RHS) converges to zero a.s. −P by Assumption 5; and (c) applying the

mean-value theorem implies that

sup
γ∈Γ
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where the RHS converges to zero a.s. −P by Assumptions 7(iii) and 8(i). Thus, we obtain that

ξ̃n :=

 δ̃0n

δ̃n
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 1
∫
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a.s. −P. This completes the proof. �
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Proof of Theorem 4: We explicitly prove only 4(ii). The proof for 4(i) is quite similar.

(ii) From the given fact that

√
n(ξ̃n − ξ∗) =

√
n
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 ,
the desired result follows if

1√
n
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Given this, we note that applying the mean-value theorem in (2) and Assumption 9 yields that

1√
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because (i) n−1/2
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(Gi−µ)⇒
∫
G, and for each j ∈ {1, 2, . . . , k},

∫
(Gi−µ)gj ⇒

∫
Ggj by the continuous mapping

theorem; and (ii) for j = 1, 2, . . . , k and j̃ = 1, 2, . . . ,m,
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by Assumption 8, so that we can let n tend to infinity first before computing the associated integrals by the DCT, implying

that

n−1
n∑
i=1

∫
g̃[∇′θG̃i(θ̄n,γ)]dQ→

∫
g̃EP[∇′θG̃i(θ̄n,γ)]dQ,

that we defined as D∗. Given this, we note that (5) and the joint convergence condition in Assumption 9 imply that∫
g̃G −D∗H∗−1Z0 is also a normal random variable having the covariance matrix B∗, obtained by applying theorem

2 of Grenander (1981, p. 48). Given this, the positive definite matrix B∗ in Assumption 9(ii) enables us to apply the

Cramér-Wold device, that we omit for brevity. This completes the proof. �

Proof of Theorem 5: To show this, we examine the asymptotic limit of each element in B̂n. First, we consider the first

row and first column element in B̂n. Note that

1

n

∑∫ ∫
ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃) =

1

n

∑∫ ∫
εi(γ)εi(γ̃)dQ(γ)dQ(γ̃)

+
2

n

∑∫
εi(γ)dQ(γ)

{∫
µ(γ̃)− δ̂0n − δ̂′ng(γ̃)dQ(γ̃)

}
+

{∫
µ(γ)− δ̂0n − δ̂′ng(γ)dQ(γ)

}2

,
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using the fact that ε̂in = εi + {µ(γ)− δ̂0n − δ̂′ng(γ)}. Further, by the FOC for the FOLS estimator, n−1
∑∫
{Gi(γ)−

δ̂0n − δ̂′ng(γ)}dQ(γ) ≡ 0, so that

1

n

∑∫ ∫
ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃) =

1

n

∑∫ ∫
εi(γ)εi(γ̃)dQ(γ)dQ(γ̃)−

{
1

n

∑∫
εi(γ)dQ(γ)

}2

.

Given this, using Cauchy-Schwarz inequality we obtain that

sup
γ,γ̃

∣∣∣∣ 1n∑Gi(γ)Gi(γ̃)

∣∣∣∣ ≤ sup
γ,γ̃

∣∣∣n−1
∑

Gi(γ)2
∣∣∣1/2 ∣∣∣n−1

∑
Gi(γ̃)2

∣∣∣1/2 ≤ n−1
n∑
i=1

M2
i a.s. − P

by Assumption 3, and the RHS is finite a.s. −P. Thus, we can first let n tend to infinity before computing the associated

integrals. The given SULLNs in Assumptions 5 and 10 imply that

∫ ∫
n−1

∑
Gi(γ)Gi(γ̃)dQ(γ)dQ(γ̃)→

∫ ∫
EP[Gi(γ)Gi(γ̃)]dQ(γ)dQ(γ̃) and

∫
n−1

∑
Gi(γ)dQ(γ)→

∫
µ(γ)dQ(γ) a.s. − P,

so that we obtain

n−1
∑∫ ∫

ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃)→
∫ ∫

κ(γ, γ̃)dQ(γ)dQ(γ̃) (8)

a.s. −P. Second, we consider the first row and (j + 1)-th column element of B̂n, where j = 1, 2, . . . , k. We note that

1

n

∑∫ ∫
ε̂in(γ)ε̂in(γ̃)gj(γ̃)dQ(γ)dQ(γ̃) =

1

n

∑∫ ∫
εi(γ)εi(γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

− 2

{
1

n

∑∫
εi(γ)dQ(γ)

}{
1

n

∑∫
εi(γ̃)gj(γ̃)dQ(γ̃)

}
+

{
1

n

∑∫
εi(γ̃)gj(γ̃)dQ(γ̃)

}2

by the FOC for the FOLS estimator, n−1
∑
{
∫

[Gi(γ)− δ̂0n−δ̂′ng(γ)]gj(γ)}dQ(γ) = 0. Given this, the Cauchy-Schwarz

inequality and Assumption 4(ii) imply that

∣∣∣n−1
∑

Gi(γ)Gi(γ̃)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2
i

∣∣∣× |gj(γ̃)|,
∣∣∣n−1

∑
Gi(γ̃)gj(γ̃)

∣∣∣ ≤ ∣∣∣n−1
∑

M2
i

∣∣∣1/2 × |gj(γ̃)|, and

∣∣∣n−1
∑

Gi(γ)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2
i

∣∣∣1/2 × |gj(γ̃)|

uniformly in γ and γ̃. Note that when the RHS’s of these inequalities are viewed as functions of γ̃, they all are in L1(Q)

a.s. −P. These imply that we can apply the DCT, so that

1

n

∑∫ ∫
[Gi(γ)− µ(γ)][Gi(γ̃)− µ(γ̃)]gj(γ̃)dQ(γ)dQ(γ̃)→

∫ ∫
κ(γ, γ̃)gj(γ̃)dQ(γ)dQ(γ̃) (9)
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a.s. −P. Third, we consider the (j + 1)-th row and (j̃ + 1)-th column element of B̂n. Note that

1

n

∑∫ ∫
gj(γ)ε̂in(γ)ε̂in(γ̃)gj̃(γ)dQ(γ)dQ(γ̃)

=
1

n

∑∫ ∫
gj(γ)εi(γ)εi(γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃)−

{
1

n

∑∫
gj(γ)εi(γ)dQ(γ)

}{
1

n

∑∫
εi(γ̃)gj̃(γ̃)dQ(γ̃)

}

using the fact that n−1
∑
{
∫

[Gi(γ)−δ̂0n−δ̂′ng(γ)]gj(γ)}dQ(γ) = 0 and n−1
∑
{
∫

[Gi(γ̃)−δ̂0n−δ̂′ng(γ̃)]gj̃(γ̃)}dQ(γ) =

0. Also, by exploiting the Cauchy-Schwarz inequality iteratively, we can obtain that

∣∣∣∣ 1n∑ gj(γ)Gi(γ)Gi(γ̃)gj̃(γ̃)

∣∣∣∣ ≤ (n−1
∑

M2
i

)
× |gj(γ)| × |gj̃(γ̃)| and

∣∣∣∣ 1n∑ gj(γ)Gi(γ̃)gj̃(γ̃)

∣∣∣∣ ≤ (n−1
∑

M2
i

)1/2
× |gj(γ)| × |gj̃(γ̃)|

uniformly in γ and γ̃. Note that the RHSs of these inequalities are in L1(Q × Q) a.s. −P when they are viewed as

functions of γ and γ̃ by Assumption 4(ii). This implies that we can apply the DCT. By applying Assumptions 5, 10, and

Theorem 1, it follows that

1

n

∑∫ ∫
gj(γ)[Gi(γ)− µ(γ)][Gi(γ̃)− µ(γ̃)]gj̃(γ̃)dQ(γ)dQ(γ̃)→

∫ ∫
gj(γ)κ(γ, γ̃)gj̃(γ)dQ(γ)dQ(γ̃) a.s. − P.

(10)

Finally, collecting all the elements in (8), (9), and (10) for j, j̃ = 1, 2, . . . , k, we obtain that the asymptotic limit of B̂n is

identical to B. This completes the proof. �

Proof of Theorem 6: (i) The proof is almost identical to the proof of Theorem 5. We examine the asymptotic limit of

each element in B̃n. First, we consider the first row and first column element in B̂n. Note that

1

n

∑∫ ∫
ε̃in(γ)ε̃in(γ̃)dQ(γ)dQ(γ̃) =

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)dQ(γ)dQ(γ̃)−

{
1

n

∑∫
ε̈in(γ)dQ(γ)

}2

,

using the facts that ε̃in = ε̈in + {µ(γ)− δ̃0n − δ̃′ng(γ)} and the FOC that n−1
∑∫
{Ĝi(γ)− δ̃0n − δ̃′ng(γ)}dQ(γ) = 0,

where ε̈in := Ĝi − µ. Given this, we already proved in the proof of Theorem 3 that n−1
∑∫

ε̈in(γ)→ 0 a.s. −P. Also,

Assumption 7(iii) enables us to apply the DCT, so that we can first let n tend to infinity before computing the associated

integral. Note that

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)dQ(γ)dQ(γ̃)

=
1

n

∑∫ ∫
G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)dQ(γ)dQ(γ̃)− 2

n

∑∫
G̃i(γ, θ̂n)dQ(γ)

∫
µ(γ̃)dQ(γ̃) +

(∫
µ(γ̃)dQ(γ̃)

)2

.
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We examine each element in the RHS. First,

sup
γ,γ̃,θ

∣∣∣n−1
∑

G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)− EP[G̃i(γ,θ
∗)G̃i(γ̃,θ

∗)]
∣∣∣→ 0 a.s. − P

by Assumption 12(i), Theorem 3, and the continuity of Gi with respect to θ, implying that

n−1
∑∫ ∫

G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)dQ(γ)dQ(γ̃)→
∫ ∫

EP[G̃i(γ,θ
∗)G̃i(γ̃,θ

∗)]dQ(γ)dQ(γ̃) a.s. − P.

Also, from the fact that n−1
∑∫

ε̈i(γ)→ 0 a.s. −P, n−1
∑∫ ∫

Ĝi(γ)µ(γ̃)→
(∫
µ
)2 a.s. − P, so that it follows that

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)dQ(γ)dQ(γ̃)→

∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃) a.s. − P. (11)

Second, we consider the first row and (j + 1)-th column element of B̃n, where j = 1, 2, . . . , k. Note that

1

n

∑∫ ∫
ε̃in(γ)ε̃in(γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

=
1

n

∑∫ ∫
ε̈i(γ)ε̈in(γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

− 2

{
1

n

∑∫
ε̈in(γ)dQ(γ)

}{
1

n

∑∫
ε̈in(γ̃)gj(γ̃)dQ(γ̃)

}
+

{
1

n

∑∫
ε̈in(γ̃)gj(γ̃)dQ(γ̃)

}2

,

and we already saw that n−1
∑∫

ε̈in → 0 a.s. −P and n−1
∑∫

ε̈igj → 0 a.s. −P in the proof of Theorem 3. Also, note

that

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

=
1

n

∑∫ ∫
G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)gj(γ̃)dQ(γ)dQ(γ̃)− 1

n

∑∫
G̃i(γ, θ̂n)

∫
µ(γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

− 1

n

∑∫
µ(γ)

∫
G̃i(γ̃, θ̂n)gj(γ̃)dQ(γ)dQ(γ̃) +

∫
µ(γ)dQ(γ)

∫
µ(γ̃)gj(γ̃)dQ(γ̃).

Given this, from the facts that n−1
∑∫

ε̈in → 0 a.s. −P and that n−1
∑∫

ε̈ingj → 0 a.s. −P, it follows that

n−1
∑∫

G̃i(γ, θ̂n)dQ(γ) →
∫
µ(γ)dQ(γ) a.s. −P and that n−1

∑∫
G̃i(γ̃, θ̂n)gj(γ̃)dQ(γ̃) →

∫
µ(γ̃)gj(γ̃)dQ(γ̃)

a.s. −P respectively. Further, using the Cauchy-Schwarz inequality, Assumption 4(ii), and Assumption 7(iii) shows that

∣∣∣n−1
∑

G̃i(γ,θ)G̃i(γ̃,θ)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2
i

∣∣∣× |gj(γ̃)|

uniformly in γ, γ̃, and θ. Note that the RHS of this inequality is in L1(Q) a.s. −P when viewed as a function of γ̃ by
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Assumption 4(ii). This implies that we can apply the DCT, so that Assumption 12(i) implies that

n−1
∑∫ ∫

ε̈in(γ)ε̈in(γ̃)gj(γ̃)dQ(γ)dQ(γ̃)→
∫ ∫

κ(γ, γ̃)gj(γ̃)dQ(γ)dQ(γ̃) a.s. − P. (12)

Third, we consider the (j+1)-th row and (j̃+1)-th column element of B̃n. We note that the FOLS FOC n−1
∑
{
∫

[Gi(γ)−

δ̂0n − δ̂′ng(γ)]gj(γ)}dQ(γ) = 0 and n−1
∑
{
∫

[Gi(γ̃)− δ̂0n − δ̂′ng(γ̃)]gj̃(γ̃)}dQ(γ̃) = 0 imply

1

n

∑∫ ∫
gj(γ)ε̃in(γ)ε̃in(γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃)

=
1

n

∑∫ ∫
gj(γ)ε̈i(γ)ε̈i(γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃)−

{
1

n

∑∫
gj(γ)ε̈i(γ)dQ(γ)

}{
1

n

∑∫
ε̈i(γ̃)gj̃(γ̃)dQ(γ̃)

}
=

1

n

∑∫ ∫
gj(γ)ε̈i(γ)ε̈i(γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃) + oa.s.(1),

as n−1
∑∫

ε̈i(γ̃)gj̃(γ̃)→ 0 a.s. −P. Also, note that

1

n

∑∫ ∫
gj(γ)ε̈in(γ)ε̈in(γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃)

=
1

n

∑∫ ∫
gj(γ)G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)gj̃(γ̃)dQ(γ)dQ(γ̃)−

∫
gj(γ)µ(γ)dQ(γ)

∫
µ(γ̃)gj̃(γ̃)dQ(γ̃) + oa.s.(1),

because n−1
∑∫

ε̈ingj → 0 a.s. −P and n−1
∑∫

ε̈ingj → 0 a.s. −P imply that n−1
∑∫

G̃i(γ, θ̂n)gj(γ)dQ(γ) →∫
µ(γ)gj(γ)dQ(γ) a.s. −P and n−1

∑∫
G̃i(γ̃, θ̂n)gj̃(γ̃)dQ(γ̃)→

∫
µ(γ̃)gj̃(γ̃)dQ(γ̃) a.s. −P. Furthermore, exploiting

the Cauchy-Schwarz inequality iteratively, we can obtain that

∣∣∣n−1
∑

gj(γ)G̃i(γ,θ)G̃i(γ̃,θ)gj̃(γ̃)
∣∣∣ ≤ (n−1

∑
M2
i

)
× |gj(γ)| × |gj̃(γ̃)|

uniformly in γ, γ̃, and θ. Note that the RHS of this inequality is in L1(Q × Q) a.s. −P, when it is viewed as a function

of γ and γ̃. This also implies that we can apply the DCT. From Assumption 12(i), it now follows that

1

n

∑∫ ∫
gj(γ)ε̃in(γ)ε̃in(γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃)→

∫ ∫
gj(γ)κ(γ, γ̃)gj̃(γ)dQ(γ)dQ(γ̃) a.s. − P. (13)

Finally, collecting all the elements in (11), (12), and (13) for j, j̃ = 1, 2, . . . , k, we obtain that the asymptotic limit of B̃n

is identical to B.

(ii) Given Theorem 6(i), the definition of B̃∗n, and the conditions in Assumption 8(iii), the desired result follows if

D̃n → D∗ and K̃n → K∗ a.s. −P. We already saw in the proof of Theorem 4(ii) that D̃n → D∗ a.s. −P. Therefore, we

only prove here that K̃n → K∗ a.s. −P. Note that

K̃n =
1

n

∑∫
si(θ̂n)ε̈in(γ)g(γ)′dQ(γ) +

1

n

∑
si(θ̂n)

∫
{µ(γ)− δ̃0n − g(γ)′δ̃n}g(γ)′dQ(γ), (14)
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and first consider the second element. First, n−1
∑
si(θ̂n) − n−1

∑
si(θ

∗) = oa.s.(1) because si is continuous with

respect to θ, and θ̂n → θ∗ a.s. −P by Assumption 8(i). Further, Assumptions 8(iii) and 9(i) imply that
∑
si(θ

∗) =

oa.s.(n), so that n−1
∑
si(θ̂n)→ 0 a.s. −P. Next, we already saw that n−1

∑∫
{Ĝi(γ)−δ̃0n−δ̃′ng(γ)}g̃(γ)′dQ(γ) = 0

by the FOC for the TSFOLS estimator, and that n−1
∑∫

Ĝi(γ)g̃(γ)′dQ(γ) →
∫
µ(γ)g̃(γ)′dQ(γ) in the proof of

Theorem 6(i). Therefore, ∫
{µ(γ)− δ̃0n − g(γ)′δ̃n}g(γ)′dQ(γ)→ 0 a.s. − P.

Third, we consider the first element in (14), and for this we verify that we can apply the DCT. From the definition of ε̈in,

note that for each j = 1, 2, · · · ,m and j̃ = 1, 2, · · · , k + 1,

1

n

∑∣∣∣sij(θ̂n)ε̈in(γ)g̃j̃(γ)
∣∣∣ ≤ { 1

n

∑
sij(θ̂n)2

}1/2
({

1

n

∑
Ĝi(γ)2

}1/2

+ |µ(γ)|

)
× |g̃j̃(γ)|

≤
{

1

n

∑
sij(θ̂n)2

}1/2
({

1

n

∑
M2
i

}1/2

+ E[M2
i ]

)
× |g̃j̃(γ)|

by Assumption 7(iii). Given this, În is finite a.s. −P and converges to I∗ a.s. −P by Assumption 8(iii), implying that

for each j = 1, 2, · · · ,m, n−1
∑
sij(θ̂n)2 is finite a.s. −P. Therefore, the RHS must be in L1(Q), when viewed as a

function of γ. Therefore, we can apply the DCT. Given this,

1

n

∑
si(θ̂n)ε̈in(γ) =

1

n

∑
si(θ̂n)Ĝi(γ)− µ(γ)

1

n

∑
si(θ̂n)

by the definition of ε̈in; and Assumption 7(iii) and
∑
si(θ̂n) = oa.s.(n) imply that µ(γ)

∑
si(θ̂n) = oa.s.(n) uniformly

in γ. Furthermore, Assumption 12(ii) and the continuity of si and Gi with respect to θ by Assumptions 8(iii.a) and 7(iii)

imply that for each γ,
1

n

∑
si(θ̂n)Ĝi(γ) = EP[si(θ

∗)Gi(γ,θ
∗)] + oa.s.(1)

because θ̂n → θ∗ a.s. −P by Assumption 8(i). We note thatEP[si(θ
∗)Gi(γ,θ

∗)] = κ0(γ) from the IID condition and the

condition in Assumption 8(iii.a) that
√
ns∗n = n−1/2

∑
si( · ,θ∗)+oP(1). Therefore, n−1

∑∫
si(θ̂n)ε̈in(γ)g(γ)′dQ(γ)

→
∫
κ0(γ)g(γ)′dQ(γ). Finally, collecting all these together implies that

K̃n =

∫
1

n

∑
siε̈in(γ)g̃(γ)′dQ(γ) + oa.s.(1) =

∫
κ0(γ)g̃(γ)′dQ(γ) + oa.s.(1),

and this completes the proof. �

Proof of Theorem 7: (i)
√
nSj(ξ̂n − ξ∗)

A∼ N(0,Γj) by Theorem 2, where Γj := SjA
−1BA−1S′j , so that it follows

that Γ
−1/2
j

√
nSj(ξ̂n − ξ∗)

A∼ N(0, Ik+2−j). Because B̂n → B a.s. −P as given in Theorem 5, Γ̂nj → Γj a.s. −P by
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proposition 2.30 of White (2001), where Γ̂nj := SjA
−1B̂nA

−1S′j . Therefore,

Mj,n := n(ξ̂n − ξ∗)′S′jΓ̂−1
n Sj(ξ̂n − ξ∗)

A∼ X 2
k+2−j

by theorem 4.30 of White (2001). Given this, we note that

Wj,n =Mj,n + 2nξ∗′S′jΓ̂
−1
n Sj(ξ̂n − ξ∗) + nξ∗′S′jΓ̂

−1
n Sjξ

∗.

Therefore,Mj,n = Wj,n = OP(1) under Hjo, so that Wj,n
A∼ X 2

k+2−j ; and Wj,n = OP(1) + OP(
√
n) + O(n) under

HjA(g), implying the desired result.

(ii)
√
nSj(ξ̃n − ξ∗)

A∼ N(0,Γj) by Theorem 4(i), and B̃n → B a.s. −P from Theorem 6(i). The rest is identical to

the proof of Theorem 7(i).

(iii)
√
nSj(ξ̃n − ξ∗)

A∼ N(0,Γ∗j ) by Theorem 4(ii), where Γ∗j := SjA
−1B∗A−1S′j , and B̃∗n → B∗ a.s. −P from

Theorem 6(ii). The rest is identical to the proof of Theorem 7(i). �

Proof of Theorem 8: (i)
√
nSj(ξ̂n − ξ∗n)

A∼ N(0,Γj) by applying Theorem 2, where Γj is defined in the proof of

Theorem 7(i), so that Γ
−1/2
j

√
nSj(ξ̂n − ξ∗)

A∼ N(0, Ik+2−j). Given this,
√
nSjξ

∗
n → ςj under Hja(g), that implies

that
√
nSj ξ̂n

A∼ N(ςj ,Γj). Further, from the fact that B̂n → B a.s. −P as given in Theorem 5, it follows that

Γ̂nj → Γj a.s. −P by proposition 2.30 of White (2001), where Γ̂nj is defined in the proof of Theorem 7(i). Therefore,

Wj,n
A∼ X 2(k + 2− j, τj) by lemma 8.2 of White (1994), implying the desired result.

(ii)
√
nSj ξ̃n

A∼ N(ςj ,Γj) by Theorem 4(i), and B̃n → B a.s. −P from Theorem 6(i). The rest is identical to the

proof of Theorem 8(i).

(iii)
√
nSj ξ̃n

A∼ N(ςj ,Γ
∗
j ) by Theorem 4(ii), and B̃∗n → B∗ a.s. −P from Theorem 6(ii), where Γ∗j is defined in the

proof of Theorem 7(iii). The rest is identical to the proof of Theorem 8(i). �
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Statistics Levels \ n 25 50 100 200 400 600 800
1% 1.04 0.83 0.82 0.90 0.96 1.05 0.92

W̃1,n(con) 5% 5.74 4.85 5.13 4.75 4.95 5.31 4.95
10% 11.18 10.74 10.57 9.85 9.79 10.61 9.89
1% 1.51 0.96 0.99 1.00 1.07 1.13 0.98

W̃1,n(con+lin) 5% 6.64 5.32 5.02 5.10 5.00 5.15 4.77
10% 12.41 11.19 10.53 9.98 10.23 10.32 10.15
1% 1.68 1.09 0.99 0.93 0.95 0.90 1.07

W̃1,n(con+quad) 5% 6.65 5.46 5.07 5.18 4.81 4.91 5.05
10% 12.75 11.21 10.81 10.44 9.86 9.97 10.16
1% 2.16 1.38 1.14 0.82 0.79 1.08 0.99

W̃1,n(con+lin+quad) 5% 8.09 6.19 5.29 4.87 4.74 4.95 4.73
10% 15.40 12.45 11.07 10.21 9.73 10.11 9.96
1% 1.60 1.14 0.91 0.98 0.79 0.94 0.98

W̃1,n(con + 0.5γ) 5% 6.71 5.58 5.39 5.29 5.23 4.84 5.31
10% 13.01 11.64 10.81 10.43 10.39 9.89 10.34
1% 0.31 0.63 0.72 0.81 1.00 1.03 0.81

BPn 5% 3.77 4.31 4.82 5.04 4.99 4.88 4.74
10% 9.60 10.07 9.92 9.96 9.66 9.82 10.19

Table 1: EMPIRICAL LEVELS OF THE WALD AND BREUSCH AND PAGAN TESTS (NUMBER OF REPLICATIONS:
10,000) This table supposes the panel data example in Section 6.1 and shows the empirical levels of the Wald tests
employing various functional regressors for the levels of significance 1%, 5%, and 10%. It further compares the empirical
levels of the Wald tests with Bresusch and Pagan’s (1979) test.
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Statistics σ2
c \ n 25 50 100 200 400 600 800
0.10 6.82 7.48 9.66 14.50 24.40 33.00 42.98
0.20 9.64 11.74 19.54 35.70 62.38 78.74 88.92

W̃1,n(con) 0.30 11.90 19.08 32.28 56.98 86.04 96.70 99.16
0.40 14.64 25.70 48.02 75.44 96.66 99.54 99.88
0.50 20.28 34.94 59.90 86.28 99.20 99.96 100.0
0.10 7.06 6.74 7.40 11.00 18.16 24.70 33.34
0.20 8.84 9.42 15.46 26.60 51.70 69.48 81.76

W̃1,n(con+lin) 0.30 11.26 14.80 26.52 47.52 78.04 92.32 97.40
0.40 13.80 20.28 38.50 66.40 92.02 98.76 99.82
0.50 15.74 27.32 49.10 79.86 98.06 99.76 100.0
0.10 7.28 6.88 7.64 10.40 17.50 25.48 33.90
0.20 9.08 9.78 15.76 27.62 49.90 67.28 81.60

W̃1,n(con+quad) 0.30 11.42 14.58 25.04 47.50 79.12 93.02 97.74
0.40 12.68 19.30 36.96 67.22 92.52 98.70 98.84
0.50 16.92 26.86 50.00 80.02 97.92 99.80 100.0
0.10 8.78 6.56 7.64 9.62 14.84 21.00 27.54
0.20 9.72 9.44 14.00 23.20 45.34 62.10 76.26

W̃1,n(con+lin+quad) 0.30 11.52 14.12 21.22 41.46 72.72 89.54 96.34
0.40 13.70 18.74 31.30 58.94 90.12 97.88 99.72
0.50 16.38 24.02 42.88 74.40 96.48 99.62 99.98
0.10 7.74 6.38 7.70 11.88 16.76 24.48 33.68
0.20 9.06 9.82 14.36 28.80 51.02 68.86 81.68

W̃1,n(con+0.5γ) 0.30 10.90 15.68 26.12 48.28 78.82 92.08 97.92
0.40 13.68 21.94 37.30 65.88 92.94 98.46 99.76
0.50 15.38 26.46 48.98 79.76 97.96 99.80 100.0
0.10 4.28 5.16 8.28 14.28 23.16 32.84 41.52
0.20 6.84 10.52 19.02 36.18 59.34 78.38 89.34

BPn 0.30 8.64 17.00 32.52 58.34 86.90 96.10 99.08
0.40 11.48 23.86 45.58 74.76 96.10 99.68 99.96
0.50 15.72 29.94 58.14 86.42 99.16 99.96 100.0

Table 2: POWERS OF THE WALD AND BREUSCH AND PAGAN TESTS (NUMBER OF REPLICATIONS: 5,000, NOMINAL

LEVEL: 5%) This table supposes the panel data example in Section 6.1 and shows the empirical powers of the Wald tests
employing various functional regressors. It further compares the empirical powers of the Wald tests with Bresusch and
Pagan’s (1979) test.
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Statistics Levels \ n 25 50 100 200 400 600 800
1% 1.72 1.15 1.02 0.97 1.20 0.89 1.03

W∗
1,n(con) 5% 6.64 5.68 5.36 5.31 5.25 4.96 5.05

10% 12.44 11.51 10.64 10.31 10.36 10.26 10.02
1% 1.45 0.77 0.59 0.67 0.60 0.78 0.62

W∗
1,n(con+lin) 5% 6.87 4.36 3.96 4.10 4.42 4.20 4.30

10% 13.37 9.79 9.01 8.91 9.27 9.61 9.41
1% 1.24 0.70 0.56 0.58 0.57 0.53 0.79

W∗
1,n(con+quad) 5% 6.39 4.35 4.03 3.79 4.02 3.83 4.34

10% 12.83 9.78 8.93 9.22 8.71 8.76 9.47
1% 2.38 1.26 0.87 0.66 0.58 0.67 0.56

W∗
1,n(con+lin+quad) 5% 8.52 5.69 4.40 3.93 3.92 4.06 3.97

10% 15.82 11.76 9.48 8.57 8.64 9.18 8.91
1% 0.85 0.77 0.52 0.84 1.03 0.86 0.88

Bn 5% 5.79 4.68 4.71 5.12 5.12 5.07 5.09
10% 12.86 11.05 10.69 10.48 10.56 10.56 10.19

SWn 11.42 7.42 5.00 3.91 3.54 3.36 3.28

Table 3: EMPIRICAL LEVELS OF THE WALD, BIERENS AND SW TESTS (NUMBER OF REPLICATIONS: 10,000) This
table supposes the specification test example in Section 6.2 and shows the empirical levels of the Wald tests employing
various functional regressors for the levels of significance 1%, 5%, and 10%. It further compares the empirical levels of
the Wald tests with Bierens’s (1990) and SW tests.
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Statistics π∗ \ n 25 50 100 200 400 600 800
0.10 49.02 76.34 95.16 99.04 99.76 99.90 100.0
0.20 64.14 85.32 95.48 99.02 99.90 100.0 100.0

W∗
1,n(con) 0.30 70.28 87.00 95.92 99.36 99.92 100.0 100.0

0.40 70.44 87.64 96.14 98.96 99.88 100.0 100.0
0.50 71.92 87.26 96.00 99.08 99.82 100.0 100.0
0.10 17.04 28.56 60.12 92.16 99.86 100.0 100.0
0.20 32.08 58.30 90.26 99.52 100.0 100.0 100.0

W∗
1,n(con+lin) 0.30 44.76 73.58 94.90 99.68 100.0 100.0 100.0

0.40 53.98 79.82 96.00 99.86 100.0 100.0 100.0
0.50 59.56 81.66 96.50 99.90 100.0 100.0 100.0
0.10 16.20 28.56 59.66 92.20 99.92 100.0 100.0
0.20 32.50 56.50 90.88 99.80 100.0 100.0 100.0

W∗
1,n(con+quad) 0.30 45.34 73.40 96.20 99.92 100.0 100.0 100.0

0.40 52.78 81.02 97.22 100.0 100.0 100.0 100.0
0.50 60.32 82.24 97.70 100.0 100.0 100.0 100.0
0.10 16.50 28.51 57.50 92.33 99.86 100.0 100.0
0.20 33.40 63.43 94.20 99.97 100.0 100.0 100.0

W∗
1,n(con+lin+quad) 0.30 49.92 83.59 99.49 99.98 100.0 100.0 100.0

0.40 63.24 92.90 99.78 100.0 100.0 100.0 100.0
0.50 73.36 96.30 99.78 100.0 100.0 100.0 100.0
0.10 18.82 40.02 70.88 92.18 98.64 99.56 99.74
0.20 38.42 67.60 87.34 95.74 99.04 99.72 99.90

Bn 0.30 52.30 77.30 89.62 96.40 99.36 99.78 99.92
0.40 58.12 80.26 90.48 96.90 99.18 99.82 99.98
0.50 64.30 82.58 91.20 96.58 99.18 99.86 99.96
0.10 26.30 38.02 65.08 91.78 99.82 100.0 100.0
0.20 46.78 69.72 93.50 99.76 100.0 100.0 100.0

SWn 0.30 60.98 82.48 96.94 99.94 100.0 100.0 100.0
0.40 69.86 87.66 98.06 99.92 100.0 100.0 100.0
0.50 75.28 90.52 98.26 99.92 100.0 100.0 100.0

Table 4: EMPIRICAL POWERS OF THE WALD, BIERENS, AND SW TESTS (NUMBER OF REPLICATIONS: 5,000,
NOMINAL LEVEL: 5%) This table supposes the specification test example in Section 6.2 and shows the empirical
powers of the Wald tests employing various functional regressors. It further compares the empirical powers of the Wald
tests with Bierens’s (1990) and SW tests.
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Statistics \ Probit Models w/ Products w/o Products

Constant
-2.7431 -2.5229
(0.0000) (0.0000)

Closing Date
0.0006 -0.0078

(0.8685) (0.0000)

Education
0.2645 0.1818

(0.0000) (0.0000)

Education2
0.0050 0.0123

(0.2433) (0.0000)

Age
0.06965 0.0697
(0.0000) (0.0000)

Age2
-0.0005 -0.0005
(0.0000) (0.0000)

South
-0.1154 -0.1159
(0.0000) (0.0000)

Gubernatorial Election
0.0034 0.0034

(0.7670) (0.7666)

Closing Date × Education
-0.0031
(0.0399)

Closing Date × Education2
0.0002

(0.0075)
Sample Size 99,676 99,676
Log-Likelihood -55,815.28 -55,818.03

Table 5: EMPIRICAL MODEL ESTIMATIONS. Two probit models for voting turnout are estimated using 1984 presidential
data of US provided by Altman and McDonald (2003). The probit model without products is the one specified by
Wolfinger and Rosenston (1980), whereas the probit model with products is the one specified by Nagler (1991). The
figures in parentheses stand for the p-values. The p-values of the parameter estimates are computed by heteroskedasticity
robust consistent standard errors.

Probit Models ψ(·) g(γ) \ Zt Closing Date Education Age
w/o Products Exponential γ 5.7287 12.0473 4.6968

(0.0570) (0.0024) (0.0955)
γ2 6.5866 13.8395 5.2719

(0.0371) (0.0010) (0.0717)
Logistic γ 3.4938 1.2557 3.7292

(0.1743) (0.5337) (0.1550)
γ2 4.4657 10.4633 3.9043

(0.1072) (0.0053) (0.1420)
w/ Products Exponential γ 10.2576 11.9407 6.0734

(0.0059) (0.0026) (0.0480)
γ2 10.9863 13.7240 5.1820

(0.0041) (0.0010) (0.0749)
Logistic γ 3.3729 1.2217 3.7026

(0.1852) (0.5429) (0.1570)
γ2 4.3062 10.2814 3.8766

(0.1161) (0.0059) (0.1440)

Table 6: WALD TESTS AND p-VALUES. Wald tests are provided as specification tests by applying the functional regres-
sion in Section 6.2. We let γ ∈ Γ := [−1, 1]. Two analytic functions are employed for ψ(·): exponential and logistic
function; two functional regressors are employed for g(γ): γ and γ2; and finally, three variables are employed for Zt:
Closing Date, Education, and Age. The figures in parentheses stand for the p-values of the Wald tests computed by
chi-square distribution with two degrees of freedom.
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