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1 Introduction

The ARDL model combines an autoregressive component (i.e. lags of a scalar dependent variable) with a

distributed lag component (i.e. lags of a vector of explanatory variables). It has its origins in the analysis

of autocorrelated trend stationary processes. In this context, the general practice is to model the de-trended

series as a stationary distributed lag, or ARDL model (Koyck, 1954; Almon, 1965). Provided that the lag

structure of the ARDL model is sufficiently rich to account for the autocorrelation structure in the data,

estimation can proceed by ordinary least squares (OLS) and standard inference is applicable with respect to

the long-run properties of the model. The application of the ARDL model to trend stationary data has been

addressed in several excellent survey articles, so we do not repeat this discussion here; rather, the reader is

referred to Griliches (1967), Wallis (1969), Nerlove (1972), Sims (1974), Maddala (1977), Thomas (1977),

Zellner (1979), Hendry, Pagan, and Sargan (1984) and Wickens and Breusch (1988). For a formal treatment

of the probability theory underlying many of the proposed estimators, see Dhrymes (1971).

We focus our attention on the more challenging case first considered by Pesaran and Shin (1998), in

which the ARDL model is applied to the analysis of the cointegrating relation between first-order integrated,

or I(1), processes. Pesaran, Shin, and Smith (2001) provide an important generalisation that makes use

of a bounds-testing framework to allow for mixed orders of integration among the variables entering the

ARDL model. The methodology proposed in these two papers has several appealing features. In addition

to providing a means to model long-run relationships among variables of unknown integration order, the

ARDL model has a straightforward and intuitive error correction interpretation, it is estimable by OLS, it

can handle serial correlation through the selection of an appropriate lag order and it can provide consistent

estimates of the long-run parameters, even if the explanatory variables are weakly endogenous. By virtue

of its many desirable features, the methodology proposed in these two papers has proven highly influential,

having given rise to thousands of empirical applications. It has also provided the basis for several notable

methodological extensions, which we refer to as ‘ARDL variants’ and which we survey in detail.

The first group of ARDL variants that we consider share a common concern with generalising the

ARDL process to accommodate various forms of asymmetry and nonlinearity. Pesaran and Shin (1998)

and Pesaran et al. (2001) assume that the long-run relationship is linear. This assumption may be prove

restrictive in practice, as it excludes the possibility of a nonlinear long-run relationship. Shin, Yu, and

Greenwood-Nimmo (2014) were the first to consider departures from linearity in the ARDL literature. In
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their Nonlinear ARDL (NARDL) model, partial sum decompositions of the explanatory variables are used

to accommodate asymmetric phenomena in the long-run and in the short-run simultaneously. Shin et al.

(2014) propose an OLS estimation procedure, the properties of which are validated by simulation. However,

the authors observe an asymptotic singularity issue that frustrates efforts to obtain the limit distribution of

the OLS estimator. Cho, Greenwood-Nimmo, and Shin (2019, 2020b) show that this singularity issue arises

due to the use of partial sum decompositions and propose an alternative two-step estimation framework

that resolves the singularity issue and that is analytically tractable. In these two papers, Cho et al. employ

a novel re-parameterisation of the NARDL model to eliminate the singularity problem and then develop

asymptotic theory for their two-step estimator, in which the parameters of the long-run relationship are

estimated in the first step using the fully-modified OLS (FM-OLS) estimator of Phillips and Hansen (1990)

before the short-run dynamic parameters are estimated in the second step by OLS. This procedure exploits

the different convergence rates of the first and second step estimators to deliver consistent and asymptotically

normal estimators of both the long- and short-run parameters. This asymptotic normality allows the authors

to employ Wald’s (1943) testing principle to develop tests for both long- and short-run asymmetry that

asymptotically converge to χ2 distributions. This is an important innovation, as it provides a means to test

the hypothesis of linearity that had previously been asserted in the linear ARDL literature.

The NARDL model has been widely adopted in the literature due to its ease of implementation and

interpretation. Part of this is due to the simplifying assumption that the threshold parameter embedded in

the NARDL model is known a priori. Typically, one uses a threshold value of zero in the construction

of the partial sum processes, which gives rise to an elegant interpretation related to positive and negative

changes in the vector of explanatory variables. This may be particularly advantageous in circumstances in

which the sign of a change in an explanatory variable carries a natural interpretation, such as exchange rate

appreciations and depreciations. Furthermore, from an inferential perspective, the use of a known threshold

simplifies the analysis, because it ensures that the identification problem described by Davies (1977, 1987)

does not arise. However, in some cases, there may be no reason to believe that setting a threshold value of

zero is appropriate a priori and/or the value of the threshold parameter may be of interest in its own right. In

such cases, one may wish to treat the threshold parameter as an unknown quantity to be estimated. This is

the motivation for the development of the Threshold ARDL (TARDL) model, estimation and inference on

which is the focus of Cho, Greenwood-Nimmo, and Shin (2020c,d).

Cho et al. (2020c) consider a setting with a single explanatory variable that is decomposed into partial
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sum processes around an unknown momentum-type threshold. In this environment, the authors demonstrate

that one must address a multifold identification problem in order to conduct inference on the number of

regimes. The multifold identification problem arises because the null hypothesis of a single regime is

composed of three sub-null hypotheses, such that the alternative hypothesis is defined by the negation of

the union of these sub-null hypotheses. Testing the joint null hypothesis is complicated by the fact that

each sub-null hypothesis represents an alternative of the other sub-null hypotheses. Drawing on the existing

literature on the multifold identification problem, Cho et al. (2020c) develop a quasi likelihood ratio (QLR)

test for the existence of a distinct threshold level and show that the null limit distribution of the test statistic

can be represented by separable functionals of two Gaussian stochastic processes provided that the TARDL

specification contains an intercept term.

Cho et al. (2020d) pursue a different approach, with the objective of determining the number of regimes

in a TARDL model with a single explanatory variable via a model selection procedure. To this end,

the authors consider six candidate information criteria, namely the Akaike information criterion (AIC),

the Schwarz information criterion (SIC) and the Hannan-Quinn information criterion (HQIC), as well as

modified versions of each criterion defined following Pitarakis (2006), which we denote pAIC, pSIC and

pHQIC. By means of an extensive simulation study, Cho et al. (2020d) show that, in general, the standard

SIC outperforms the other information criteria if the independent variable is not driven by a time drift.

However, if this is not the case, then the pSIC outperforms the other information criteria in small samples,

while SIC and pSIC jointly outperform the remainder in large samples.

As it is typically implemented, the NARDL model focuses on sign asymmetry, while the TARDL model

allows for greater flexibility and admits the possibility of size asymmetry as well as sign asymmetry. Neither

of these models addresses the issue of locational asymmetry, whereby the error correction relationship

between a scalar dependent variable, yt, and a vector of explanatory variables, xt, is allowed to vary

throughout the conditional distribution of yt|xt. Cho, Kim, and Shin (2015) were the first to address this

issue by applying quantile regression following Koenker and Bassett (1978) and Xiao (2009) to estimate

the parameters of an ARDL model at different locations in the conditional distribution. This contrasts with

the classical estimators employed by Pesaran and Shin (1998) and Pesaran et al. (2001), which characterise

the relationship at the conditional mean only. Cho et al. (2015) establish that the limiting distribution of the

quantile regression estimators of the long-run and short-run parameters is mixed-normal, which implies that

asymptotic critical values for Wald statistics testing various hypotheses on the quantile coefficients can be
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retrieved from χ2 distributions. In a subsequent paper, Cho, Greenwood-Nimmo, Kim, and Shin (2020a)

apply quantile regression to the estimation of a NARDL model, thereby providing a unified framework for

the estimation of an ARDL process that encompasses both size and locational asymmetry.

In addition to the asymmetric and nonlinear ARDL variants described above, the ARDL specification

has also been applied to large T panels – that is, panels with many time series observations per group.

Pesaran, Shin, and Smith (1999) consider a setting in which a panel ARDL specification is estimated under

the assumption that the long-run parameters are homogeneous across groups, while the short-run dynamic

parameters are heterogeneous. This setting has intuitive appeal, as there are often good reasons to believe

that long-run equilibrium relationships should be approximately common across groups but, in general, the

same cannot be said for dynamic parameters. The so-called Pooled Mean Group (PMG) estimator employs

an innovative hybrid estimation approach, whereby the homogeneous long-run parameters are estimated

by maximum likelihood with the data pooled over groups, while the heterogeneous short-run parameters

are estimated on a group-specific basis and their group-wide distribution is summarised by taking averages

across groups. In the case of stationary data, Pesaran et al. demonstrate that the PMG estimator is consistent

and asymptotically normal while, under non-stationarity, it is consistent and converges to a mixed-normal

distribution.

The final model that we consider is another panel data variant of the ARDL process, this time designed

to exploit the growing availability of spatial time series data. The Spatio-Temporal ARDL (STARDL) model

proposed by Shin and Thornton (2019) is a system of ARDL equations, each of which is augmented with

variables defined as spatially-weighted averages. Shin and Thornton develop a quasi-maximum likelihood

estimator, as well as an alternative estimator based on the control function framework. In both cases,

the authors demonstrate that their estimators are consistent and asymptotically normal. The STARDL

framework can be thought of as an omnibus model that nests several popular spatial models, including the

spatial Durbin model analysed by Lee and Yu (2010) and Elhorst (2014) and the heterogeneous spatial

autoregressive panel data model of Aquaro, Bailey, and Pesaran (2021). Shin and Thornton also note

that the network structure of the STARDL model is amenable to the application of many of the popular

tools of network analysis, including centrality statistics and clustering algorithms. By analogy to the

dynamic multiplier effects that are widely used in the analysis of ARDL models, the authors derive diffusion

multipliers from the spatial system that can be used to explore the properties of the spatial dynamic network.

This paper proceeds as follows. In Section 2, we briefly review the ARDL model of Pesaran and Shin
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(1998) and Pesaran et al. (2001) to provide relevant background for the six ARDL variants on which our

survey focuses. In Section 3, we introduce the classic NARDL model of Shin et al. (2014) based on a known

threshold, before discussing the case of unknown thresholds in the context of the TARDL model. In Section

4, we outline the quantile ARDL and quantile NARDL models, while Sections 5 and 6 are devoted to the

PMG estimator of Pesaran et al. (1999) and the STARDL model of Shin and Thornton (2019), respectively.

In Section 7, we offer concluding remarks and we briefly discuss some promising avenues for continuing

development of the ARDL framework.

2 The ARDL Model with Non-Stationary Data

Pesaran and Shin (1998) study the following process:

yt = γ∗ +

p∑
j=1

φj∗yt−j +

q∑
j=0

θ′j∗xt−j + εt, (1)

which is obtained by applying the distributed-lag form to the integrated time series (yt,x
′
t)
′ ∈ R1+k. Pesaran

and Shin refer to (1) as an ARDL(p, q) process. This model represents an extension of the prior ARDL

literature focusing on trend stationary data (e.g. Koyck, 1954; Almon, 1965) with the intention of capturing

not just the dynamic relationship but also the long-run relationship between yt and xt. The authors go on to

demonstrate that (1) can be expressed in the following alternate form:

yt = γ∗ + x′tγ∗ +

p∑
j=1

φj∗yt−j +

q−1∑
j=0

∆x′t−jδj∗ + εt, (2)

where γ∗ :=
∑q

j=0 θj∗ and δj∗ := −
∑q

i=j+1 θi∗. The long-run relationship between yt and xt embedded

in (2) can be represented as yt = µ∗ + x′tβ∗ + ut, where:

µ∗ := γ∗

(
1−

p∑
i=1

φi∗

)−1
, β∗ := γ∗

(
1−

p∑
i=1

φi∗

)−1
,

and ut is a stationary process defined by {∆xt, εt,∆xt−1, εt−1, . . .}.

The ARDL process can be represented as an error correction process in the tradition of the London
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School of Economics (e.g. Sargan, 1964; Hendry and Mizon, 1978, among others) as follows:

∆yt = ρ∗yt−1 + θ′∗xt−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

π′j∗∆xt−j + εt, (3)

where {εt;F0
t } is a martingale difference sequence andF0

t is the smallest σ-algebra driven by {yt−1,xt, yt−2,

xt−1, . . .}. Note that the error correction process (3) can be derived from the ARDL process (1) by letting:

ρ∗ :=

p∑
j=1

φj∗ − 1, θ∗ :=

q∑
j=0

θj∗, π0∗ := θ0∗, ϕ`∗ := −
p∑

i=`+1

φi∗, and πj∗ := −
q∑

i=j+1

θi∗

for ` = 1, 2, . . . , p− 1 and j = 1, 2, . . . q − 1. Furthermore, if yt is cointegrated with xt such that ut−1 :=

yt−1 − β′∗xt−1 is stationary, then (3) can be re-written as:

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

π′j∗∆xt−j + εt, (4)

where β∗ := −(θ∗/ρ∗), which provides motivation for the separate estimation of the long-run and short-run

parameters. Engle and Granger (1987) estimate the long-run parameter by OLS, while Phillips and Hansen

(1990) propose to estimate the same parameter using the fully-modified OLS (FM-OLS) estimator, which

overcomes the asymptotic bias in the OLS estimator and which asymptotically follows a mixed normal

distribution. Many other procedures for the consistent and efficient estimation of the long-run coefficients

have been proposed in the literature (e.g. Stock and Watson, 1993; Johansen, 1988, among others). Pesaran

and Shin (1998) propose an elegant procedure, in which one first estimates the coefficients of (2) by OLS

and then estimates β∗ as β̂T := γ̂T

(
1−

∑p
i=1 φ̂T,i

)−1
, where γ̂T and φ̂T,i are the OLS estimators of

γ∗ and φi∗, respectively. The authors show that β̂T converges to β∗ at the rate of T and asymptotically

follows a mixed normal distribution, while the short-run parameter estimators converge to the unknown

parameters in (2) at the rate of
√
T and are asymptotically normal. For this reason, Pesaran and Shin

(1998) are able to apply Wald’s (1943) testing principle to conduct inference on the unknown long-run

and short-run parameters, with simulation evidence indicating that the behaviour of the Wald test statistic

is well-approximated by asymptotic results, even in relatively small samples. These results are obtained

under relatively mild conditions on the times series. In particular, in addition to the conditions described

above, Pesaran and Shin (1998) assume that the variables in xt are not cointegrated among themselves and
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that the roots of φ(L) = 0 are strictly greater than unity, where φ(L) := (1 −
∑p

j=1 φj∗L
j). Without

these conditions, the desired long-run relationship is not established. Furthermore, Pesaran and Shin (1998)

suggest that the lag orders of the ARDL process can be selected using the Schwarz (1978) information

criterion, although other approaches including general-to-specific lag selection are also commonly used in

practice.

In an influential contribution to the ARDL literature, Pesaran et al. (2001) develop a bounds test for the

null hypothesis of no long-run (cointegrating) levels relationship using the error correction representation of

the ARDL process. The authors derive the null limit distributions of the F-statistic testing the null hypothesis

ρ∗ = 0 and θ∗ = 0 in (3) as functionals of a Wiener process under various assumptions on the model

coefficients and the order of integration of the variables. Pesaran et al. (2001) tabulate critical value bounds

from these asymptotic distributions for use in applied research in which one is unsure of the true order of

integration of the variables entering the model.

The ARDL framework developed by Pesaran and Shin (1998) and Pesaran et al. (2001) has been widely

adopted in applied research. At the time of writing, Google Scholar records approximately 6,000 and 14,000

citations to these two papers, respectively. Applications of the ARDL model can be found in many areas of

the social sciences, with a particular prevalence in finance, macroeconomics and energy economics. There

are many reasons for the popularity of the ARDL model. Perhaps most importantly, the functional form

of the ARDL(p, q) process has intuitive appeal, as it allows for partial adjustment toward an economically

meaningful long-run equilibrium relationship between yt and xt. In addition, the ARDL model naturally

accounts for the serial correlation structure that exists among the first differences of yt and xt and can

provide consistent estimates of the long-run parameters even in the presence of weak endogeneity.

In addition to the many empirical applications of the ARDL model, a considerable body of work has

been dedicated to the development of variants of the ARDL model that allow for departures from linearity

and alternative data structures, including panel data and spatial panel data. The remainder of this paper is

dedicated to reviewing several of these developments.

3 Nonlinearity and Threshold Effects

In this section, we consider two generalisations of the ARDL model that accommodate departures from

linearity in a manner that is pertinent to many integrated economic time series and that nest the linear
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ARDL model as a special case, thereby providing a means to test the hypothesis of linearity. The nonlinear

autoregressive distributed lag (NARDL) and threshold autoregressive distributed lag (TARDL) models employ

partial sum decompositions of the explanatory variables to accommodate asymmetry and nonlinearity,

respectively. Consider the model:

yt = γ∗ +

p∑
j=1

φj∗yt−j +

q∑
j=0

(θ+′j∗x
+
t−j + θ−′j∗x

−
t−j) + εt, (5)

where xt ∈ Rk, x+
t :=

∑t
j=1 ∆x+

j and x−t :=
∑t

j=1 ∆x−j with:

∆x+tj :=

 0, if τj∗ ≥ ∆xtj ;

∆xtj , otherwise,
and ∆x−tj :=

 0, if τj∗ < ∆xtj ;

∆xtj , otherwise.

In this case, {∆xt} is a strictly stationary process and we define τ ∗ := [τ1∗, . . . , τj∗, . . . , τk∗]
′. Note

that (5) extends the ARDL specification in (1) to accommodate a nonlinear relationship between yt and xt,

where differences in the values of θ+j∗ and θ−j∗ capture the asymmetric effect of x+
t−j and x−t−j on yt. The

motivation behind the development of the NARDL process is the desire to capture the asymmetric stochastic

trend of an integrated series and its long-run relationship with other integrated series. The literature on

asymmetric exchange rate pass-through into import prices offers a good example of such an asymmetric

long-run relationship (e.g. Brun-Aguerre, Fuertes, and Greenwood-Nimmo, 2017).

If the threshold level, τ ∗, is known (e.g. 0 or the mean of ∆xt) then, although (5) is linear in the unknown

parameters, it can accommodate asymmetry in the long-run and the short-run relationships between yt and

xt. This is the NARDL(p, q) model proposed by Shin et al. (2014). If the threshold parameter, τ ∗, is

unknown, then one must estimate it in order to evaluate the nonlinear relationship between yt and xt. In this

case, the estimation problem is nonlinear due to the necessity to estimate the threshold parameter. This is the

TARDL(p, q) model advanced by Cho et al. (2020c,d). The motivation for the development of the TARDL

model lies in the realisation that asymmetric phenomena of the type modelled by the NARDL process

may arise around unknown threshold levels that cannot be deduced a priori, which makes it necessary to

consistently estimate the threshold level, τ ∗. By way of illustration, returning to the example of exchange

rate pass-through into import prices, one can easily conceive of a situation in which import prices adjust

differentially according not just to the sign but also to the magnitude of exchange rate changes.

The NARDL/TARDL model (5) can be transformed into an error correction model. For some ρ∗, θ+∗ ,
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θ−1∗ , ϕj∗ (j = 1, 2, . . . , p− 1), π+
j∗, and π−j∗ (j = 0, 1, . . . , q − 1), we can re-write (5) as follows:

∆yt = ρ∗yt−1 + θ+′∗ x
+
t−1 + θ−′∗ x

−
t−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ εt, (6)

where {εt,Ft} is a martingale difference sequence, Ft is the smallest σ-algebra driven by {yt−1,x+
t ,x

−
t ,

yt−2,x
+
t−1,x

−
t−1, . . .}, ρ∗ :=

∑p
j=1 φj∗ − 1, θ+∗ :=

∑q
j=0 θ

+
j∗, θ

−
∗ :=

∑q
j=0 θ

−
j∗, π

+
0∗ := θ+0∗ and π−0∗ :=

θ−0∗ while ϕ`∗ := −
∑p

i=`+1 φi∗, π
+
j∗ := −

∑q
i=j+1 θ

+
i∗ and π−j∗ := −

∑q
i=j+1 θ

−
i∗ for ` = 1, 2, . . . , p − 1

and j = 1, 2, . . . q − 1.

If yt is cointegrated with (x+′
t ,x

−′
t )′ such that ut−1 := yt−1 − β+′

∗ x
+
t−1 − β

−′
∗ x
−
t−1 is a cointegration

error, then (6) can be re-written as follows:

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ εt, (7)

where ut−1 := yt−1−β+′
∗ x

+
t−1−β

−′
∗ x
−
t−1 is a stationary process that is possibly correlated with ∆xt, β+

∗ :=

−(θ+∗ /ρ∗) and β−∗ := −(θ−∗ /ρ∗) are the nonlinear long-run parameters and the remaining parameters

capture the (nonlinear) short-run dynamics. The error correction form (7) has the interesting implication

that, even if the population mean of ∆xt is zero, yt can be an integrated process with a time drift, because

both ∆x+
t and ∆x−t cannot have zero population mean. This is a different form of cointegrating relationship

from the standard case, in which a cointegrating relationship between integrated processes with and without

a time drift is driven by the presence of a non-zero intercept in (7).

The NARDL framework has been adopted widely, because it provides a simple method for the analysis

of asymmetries of the type that may arise in many areas of the social sciences. Furthermore, Shin et al.

(2014) show that one may construct cumulative dynamic multipliers from the estimated parameters of the

NARDL model, which provides an easily interpreted visualisation of the traverse to an equilibrium position

following a shock. Unlike structural impulse response analysis, the cumulative dynamic multipliers do not

rely on controversial procedures for the identification of structural shocks. Due in part to these desirable

attributes, Google Scholar reports more than 1,400 citations to Shin et al. (2014) at the time of writing,

with applications in diverse fields such as criminology (e.g. Box, Gratzer, and Lin, 2018), energy economics

(e.g. Hammoudeh, Lahiani, Nguyen, and Sousa, 2015), financial economics (e.g. He and Zhou, 2018),

monetary economics (e.g. Claus and Nguyen, 2019) and tourism (e.g. Süssmuth and Woitek, 2013), among
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others. The majority of existing NARDL applications follow Shin et al. (2014) and employ a single known

threshold value of zero, but several studies including Fedoseeva (2013) and Pal and Mitra (2015) have

used multiple thresholds. As described above, the nascent interest in the use of non-zero thresholds in this

literature represents an important motivating factor behind the development of the TARDL model by Cho

et al. (2020c,d).

3.1 Estimation and Inference for the NARDL Model

Shin et al. (2014) propose to estimate the NARDL model in a single step by OLS. However, they note

that efforts to derive asymptotic theory for the single-step OLS estimator are frustrated by an asymptotic

singularity problem that arises from the presence of partial sum decompositions of the explanatory variables.

Consequently, Shin et al. provide simulation evidence regarding the performance of the single-step estimator

but the corresponding theory has yet to be developed. Cho et al. (2019) study the asymptotic singularity issue

in detail and develop theory for a new two-step estimation framework. Let:

zt :=
[
yt−1 x+′

t−1 x−′t−1 1 ∆y′t−1 ∆x+′
t . . . ∆x+′

t−q+1 ∆x−′t . . . ∆x−′t−q+1

]′
,

where ∆yt−1 := [∆yt−1,∆yt−2, . . . ,∆yt−p+1]
′. Under the assumption that E[∆xt] = 0, Cho et al. (2019)

show that D−1T (
∑T

t=1 ztz
′
t)D

−1
T converges to a singular matrix, where DT := diag(T 3/2I2+2k, T

1/2Ip+2qk).

This is the singularity to which Shin et al. (2014) allude and which provides motivation for the development

of a two-step estimation strategy by Cho et al. (2019). Consider the long-run relationship embedded in

the NARDL model, which can be written as yt = ς∗ + x+′
t β

+
∗ + x−′t β

−
∗ + ut. Cho et al. (2019) show that

another asymptotic singularity issue arises here, as the matrix inverse required to obtain the OLS estimator of

(ς∗,β
+′
∗ ,β

−′
∗ )′ is asymptotically singular, because D̄−1T

(∑T
t=1 vtv

′
t

)
D̄−1T converges to a singular matrix,

where vt := (1,x+′
t ,x

−′
t )′ and D̄T := diag(T 1/2, T 3/2I2k). To overcome this problem, the authors

re-parameterise the long-run relationship as yt = ς∗+x+′
t λ∗+x′tη∗+ut, where xt ≡ x+

t +x−t , λ∗ = β−∗

and η∗ + λ∗ = β+
∗ . Using this re-parameterisation, Cho et al. (2019) assume k to be unity (i.e., k = 1)

and show that one can first estimate (ς∗,λ
′
∗,η
′
∗)
′ by OLS to obtain (ς̂T , λ̂

′
T , η̂

′
T )′ and one can then estimate

(β+′
∗ ,β

−′
∗ )′ as β̂

−
T := λ̂T and β̂

+

T := η̂T + λ̂T .

With the long-run parameters estimated in this way, the singularity problem is resolved. If we let

qt := (1,x+′
t ,x

′
t)
′ and D̃T := diag(T 1/2, T 3/2Ik, T Ik), then D̃−1T

(∑T
t=1 qtq

′
t

)
D̃−1T weakly converges to
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a random matrix associated with a Brownian motion. Consequently, it is possible to show that the long-run

parameter estimator is T -consistent and has an asymptotic distribution characterised by a Brownian motion.

Due to the super-consistency of the long-run parameter estimator, it is possible to estimate the short-run

parameters of (7) by OLS by replacing ut−1 in (7) with ût−1 := yt−1−x+
t−1β̂

+′
T −x−t−1β̂

−′
T . Because all of

the variables in (7) are stationary and {εt} is a martingale difference array, the short-run parameter estimator

is
√
T -consistent and asymptotically normal.

The procedure detailed above provides an operational framework for the estimation of the NARDL

model but it suffers from the drawback that the asymptotic distribution of the long-run parameter estimator is

non-normal and depends on nuisance parameters, which complicates inference on the long-run parameters.

To address this issue, Cho et al. (2019) note that one may simply estimate (β+′
∗ ,β

−′
∗ )′ using the FM-OLS

estimator of Phillips and Hansen (1990) rather than by OLS. If Σ̃T and Π̃T are consistent estimators for the

following asymptotic covariance matrices:

Σ :=

 Σ(1,1) Σ(1,2)

Σ(2,1) σ(2,2)

 := acov

 1√
T

T∑
t=1

 ∆xt

ut

 , 1√
T

T∑
t=1

 ∆xt

ut

 and

ΠT :=

 Π(1,1) Π(1,2)

Π(2,1) π(2,2)

 := acov

 1√
T

T∑
t=1

 ∆xt

ut

 ,
 ∆x0

u0

 ,
then, the FM-OLS estimator is given by:

%̃T := (ς̃T , λ̃
′
T , η̃

′
T )′ :=

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtỹt − TS′Λ̃T

)
,

where ỹt := yt − ∆x′t

(
Σ̃

(1,1)

T

)−1
Σ̃

(1,2)

T , Λ̃T := Π̃
(1,2)

T − Π̃
(1,1)

T

(
Σ̃

(1,1)

T

)−1
Σ̃

(1,2)

T , and S := [01×2, 1].

The long-run parameter estimator is then obtained as β̃
−
T := λ̃T and β̃

+

T := η̃T + λ̃T . Cho et al. (2019)

prove that the FM-OLS estimator of the long-run parameters is T -consistent and asymptotically follows a

mixed-normal distribution. Therefore, if one replaces ut−1 in (7) with ũt−1 := yt − x+
t β̃

+′
T − x−t β̃

−
T , then

the short-run parameters of (7) can be estimated consistently by OLS.

Cho et al. (2019) demonstrate that the Wald test statistic applied to both the long-run and the short-run

parameters asymptotically follows a χ2 distribution under the null hypothesis. The authors examine two

null hypotheses: first, that for some R` ∈ Rr×1 and r ∈ Rr, H ′0 : R`(β
+
∗ − β−∗ ) = r and, second, that

11



for some R ∈ Rr×2, H ′′0 : Rβ∗ = r, where β∗ := (β+′
∗ ,β

−′
∗ )′. The first null, H ′0, is given to test the full

or partial equality between β+
∗ and β−∗ , while the second null, H ′′0 , is considered to test a general family of

hypotheses on the long-run parameters. Cho et al. (2019) show that the Wald test statistics follow chi-squared

distributions under their respective null hypotheses and that they exhibit consistent power against the relevant

o(T 3) and o(T 2) alternatives. These results are established under mild regularity conditions. In particular,

the regular stationary, mixing and moment conditions apply to {(∆x′t, ut)′}, such that the functional central

limit theorem may be invoked (e.g. Phillips and Hansen, 1990) along with the positive definite global

covariance matrix condition. In addition, the authors assume that E[∆xt] = 0, such that cointegration is

defined among an integrated series with a time drift, yt, and an integrated series without drift, xt. Therefore,

before implementing the methodology proposed by Cho et al. (2019), the empirical researcher may wish to

test whether ∆xt has a population mean equal to zero.

In a subsequent paper, Cho et al. (2020b) replace the condition E[∆xt] = 0 with E[∆xt] 6= 0 and show

that the same asymptotic singularity issue surveyed above arises in this case. Cho et al. (2020b) develop

an extension of the two-step estimation framework proposed by Cho et al. (2019) that can accommodate

the non-zero population mean of ∆xt and that is also effective when E[∆xt] = 0 with k > 1. If we let

µ+
∗ := E[∆x+

t ] and µ−∗ := E[∆x−t ], then we can write:

x+
t = γ+

∗ + µ+
∗ t+

t∑
j=1

s+j and x+
t = γ−∗ + µ−∗ t+

t∑
j=1

s−j , (8)

where s+t := ∆x+
t −µ+

∗ and s−t := ∆x−t −µ−∗ . The long-run relationship embedded in the NARDL model

can be written as:

yt = β+′
∗
(
µ+
∗ t+w+

t

)
+ β−′∗

(
µ−∗ t+w−t

)
+ ut = β+′

∗ w
+
t + β−′∗ w

−
t + ξ∗ + δ∗t+ vt, (9)

where w+
t :=

∑t
j=1 s

+
j and w−t :=

∑t
j=1 s

−
j , implying that the long-run parameters can be consistently

estimated by regressing yt on (w+′
t ,w

−′
t , 1, t)

′. Aswt := (w+′
t ,w

−′
t )′ is not observable, Cho et al. (2020b)

propose to first estimate (8) by regressing x+
t and x−t on (1, t) to obtain regression residuals, ŵ+

t and ŵ−t ,

that approximate w+
t and w−t . Next, one can estimate the long-run parameters from the regression of yt

on (ŵ+′
t , ŵ

−′
t , 1, t)

′. The long-run parameter estimator obtained in this way is shown to be T -consistent.

Meanwhile, the short-run parameters can be estimated consistently by OLS in a subsequent step.
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Despite the simple structure of this estimator, it is not straightforward to derive its asymptotic distribution,

which complicates inference on the long-run parameters; specifically, the null limit distribution of the Wald

statistic testing restrictions on the long-run parameters does not follow the chi-squared distribution. Cho

et al. (2020b) show that this issue can be resolved by using FM-OLS to estimate the long-run parameters.

The resulting long-run parameter estimator is asymptotically mixed-normal, so the associated Wald test

statistic asymptotically follows a mixed chi-squared distribution under the null hypothesis. These results are

obtained by imposing the regular stationary, mixing and moment conditions on {(s+′t−1, s
−′
t−1, ut−1, εt)

′},

together with the positive definite global covariance matrix condition and a martingale difference sequence,

{εt,Ft}, so as to apply the functional central limit theorem. These conditions are standard in the literature.

The most restrictive assumption is that the level of threshold is known a priori and it is to this issue that we

now turn.

3.2 Estimation and Inference for the TARDL Model

The NARDL model is relatively simple to estimate due to the fact that the threshold parameter in (5), τ ∗,

is known a priori. By contrast, if the threshold is unknown, then it must be estimated. Cho et al. (2020c)

examine the existence of the threshold using an inferential procedure, while Cho et al. (2020d) address the

same issue from a model selection perspective.

Cho et al. (2020c) assume a single regressor (i.e., k = 1) and note that the TARDL model (5) reduces to

the linear ARDL model if θ+j∗ = θ−j∗ for all j = 0, 1, . . . , q. If so, the TARDL model has a set of redundant

parameters, which may hamper standard inferential procedures. Consequently, the authors first test for the

existence of a distinct threshold level using a quasi-likelihood ratio (QLR) test statistic. Let the ARDL and

TARDL processes in (3) and (6) be the null and alternative models, respectively. The QLR test statistic is

defined by:

QLRn := T

(
1−

σ̂2T
σ̂2T,0

)
,

where σ̂2T and σ̂2T,0 are the error variance estimators obtained under the alternative and null models by

optimising the sums of squared residuals with respect to the unknown parameter:

σ̂2T,0 := inf
1

T

∑
t

∆yt − ρyt−1 − θxt−1 − γ −
p−1∑
j=1

ϕj∆yt−j −
q−1∑
j=0

πj∆xt−j

2

, and
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σ̂2T := inf
1

T

∑
t

∆yt − ρyt−1 − θ+x+t−1 − θ
−x−t−1 − γ −

p−1∑
j=1

ϕj∆yt−j −
q−1∑
j=0

π+j ∆x+t−j + π−j ∆x−t−j

2

.

While σ̂2T,0 is estimated by OLS, σ̂2T is estimated by nonlinear least squares, because τ∗ must also be

estimated. Cho et al. (2020c) obtain consistent estimates of the linear coefficients as well as τ∗ by first

estimating the linear coefficients by OLS for each τ and then optimising them with respect to τ .

Cho et al. (2020c) examine the QLR test statistic because such statistics have been applied in the

literature to handle multifold identification problems.1 To understand the multifold identification problem

in the TARDL model, note that the identification problem described by Davies (1977, 1987) can arise in

three different ways. First, if θ+∗ = θ−∗ and π+
∗ = π−∗ in (6), where π+

∗ := (π+0∗, π
+
1∗, . . . , π

+
q−1∗)

′ and

π−∗ := (π−0∗, π
−
1∗, . . . , π

−
q−1∗)

′, then τ∗ is not identified. Second, if τ∗ = Φ−1(0), where Φ(·) denotes the

cumulative distribution function of ∆xt, then it follows that ∆x+t ≡ ∆xt and ∆x−t ≡ 0, which means

that the coefficients associated with the negative regime, such as θ−∗ and π−∗ , are not identified. Finally, if

τ∗ = Φ−1(1), it follows that ∆x−t ≡ ∆xt and ∆x+t ≡ 0, such that the coefficients associated with the

positive regime are not identified. Consequently, the null hypothesis of a single regime is composed of the

following three sub-null hypotheses:

H01 : θ+∗ = θ−∗ and π+
∗ = π−∗ ; H02 : τ∗ = Φ−1(0); and H03 : τ∗ = Φ−1(1),

and the negation of the union of the sub-null hypotheses becomes the alternative hypothesis.

Due to this multifold identification problem, testing the joint null hypothesis by standard methods is a

challenging task, because each sub-null hypothesis represents an alternative to another sub-null hypothesis,

with the result that testing the union of the sub-null hypotheses cannot proceed on the basis of testing the

hypothetical locations of the null parameter space. Consequently, in keeping with the established precedent

in the literature, Cho et al. (2020c) tackle the multifold identification problem using the QLR test statistic.

Cho et al. (2020c) show that the null limit distribution of the QLR test statistic can be represented as a

1The multifold identification problem has been shown to arise in many popular models. For example, Cho and White (2007,
2010) examine a regime-switching process and note that a multifold identification problem arises when testing for one regime
versus two regimes. The multifold identification problem is also observed when testing a linear model against an artificial neural
network model or a smooth transition autoregressive model and in a consistent moment specification testing context (e.g. Baek,
Cho, and Phillips, 2015; Cho, Cheong, and White, 2011a; Cho and Ishida, 2012; Cho, Ishida, and White, 2011b, 2014; Cho and
Phillips, 2018; Seong, Cho, and Teräsvirta, 2019). All of these studies show that test statistics constructed using the likelihood ratio
testing principle can overcome the multifold identification problem by providing the null limit distributions of the test statistics,
which can be represented as functionals of Gaussian stochastic processes.
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functional of two Gaussian stochastic processes, in contrast to results in the prior literature. As the variables

entering the TARDL model are cointegrated I(1) processes, an additional Gaussian process is introduced

to derive the null limit distribution. Specifically, Cho et al. (2020c) first show that the null approximation

of the QLR test statistic under H01 dominates the other null approximations obtained under H02 and H03,

such that the null limit distribution of the QLR test statistic is given by the limit of the null approximation

of the QLR test statistic under H01. Next, they note that the functional of the two Gaussian stochastic

processes is a sum of two separable functionals of the two Gaussian processes, such that the functional of

the first Gaussian process is obtained while testing π+
∗ = π−∗ , whereas the functional of the second Gaussian

process is obtained when testing θ+∗ = θ−∗ . Furthermore, the authors discover that the first Gaussian process

is indexed by the parameter τ due to the Davies (1977, 1987) identification problem. However, the second

Gaussian process is formed by a partial sum process introduced by Phillips (1991, theorem 1) when testing

a hypothesis on cointegration coefficients. Based on these findings, Cho et al. (2020c) perform a simulation

study to show that the limit distribution of each functional can be separately approximated by combining

a bootstrap method with a χ2 distribution. Specifically, the first functional can be approximated by the

weighted bootstrap procedure of Hansen (1996), while a χ2 distribution approximates the second functional,

as demonstrated by Phillips (1991).

Cho et al. (2020c) draw attention to several aspects of testing with TARDL models. First, as the null limit

distribution of the QLR test statistic is characterised mainly by a functional of a Gaussian process indexed

by τ , the authors restrict the dimension of τ be equal to unity (i.e., k = 1). This is a pragmatic decision

motivated by the difficulty of obtaining the null limit distribution of τ in higher-dimensional cases. Second,

the authors show that the specification of the TARDL process also determines the form of the functional

of the two Gaussian processes. For example, in the case where the intercept is excluded from the TARDL

model (6) because it is known to be zero a priori, the null limit distribution is characterised by non-separable

functionals of the two Gaussian processes. Consequently, it is recommended that one should estimate the

intercept even if its value is known ex ante in order to facilitate the application of the QLR test statistic.

To derive the null distribution of the QLR test statistic, Cho et al. (2020c) impose the regular stationary,

mixing, and moment conditions to {(∆yt,∆x′t)′}, along with the globally positive definite covariance

matrix condition and a martingale difference sequence, {εt,Ft}. In addition, they impose the strong

assumption that (∆yt,∆x
′
t)
′ is continuously distributed with known marginal distribution for ∆xt. The

assumption that the marginal distribution of ∆xt is known is restrictive but this issue can be ameliorated
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by estimating it consistently and accommodating its influence on the null limit distribution of the QLR test

statistic.

The inferential procedure developed by Cho et al. (2020c) does not provide a method to estimate the

number of thresholds in the event that the null hypothesis of no threshold effect is rejected. This observation

contributes to the motivation for Cho et al.’s (2020d) analysis of a more general setting of the TARDL

process subject to S − 1 threshold levels. The authors allow for the case in which k may differ from unity,

such that there are τ 1∗ < τ 2∗ < . . . < τS−1∗ threshold levels, which means that the long-run relationship

between yt and xt is captured by:

yt = γ∗ + β
(1)′
∗ x

(1)
t + β

(2)′
∗ x

(2)
t + . . .+ β

(S)′
∗ x

(S)
t + ut,

where, for each j = 1, 2, . . . , S, x(j)
t =

∑t
t=0 ∆x

(j)
j with ∆x

(1)
t := ∆xt ◦ 1{∆xt <† τ 1∗}, ∆x

(S)
t :=

∆xt ◦ 1{∆xt ≥† τS−1∗}, and for s = 2, 3, . . . , S − 2, ∆x
(s)
t := ∆xt ◦ 1{τ s−1∗ ≤† ∆xt <† τ s∗}.

Here, ◦ denotes the Hadamard product, while the subscript ‘†’ following an inequality sign denotes the

element-by-element inequality between two vectors. This represents a straightforward generalisation of the

long-run relationship between yt and xt introduced in Section 3.1 to the case of multiple thresholds. Cho

et al. (2020d) consider the following error-correction form of this process, which generalises the TARDL(p,

q) process (6):

∆yt = ρ∗yt−1 +

S∑
s=1

θ
(s)′
∗ x

(s)
t−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

S∑
s=1

π
(s)′
j∗ ∆x

(s)
t−j + ε

(S)
t , (10)

and refer to this as the TARDL(τ ∗; p, q) process, where τ ∗ := (τ ′1∗, . . . , τ
′
S−1∗)

′. Note that, if S = 2, the

TARDL(τ ∗; p, q) process reduces to the TARDL(p, q) process. Furthermore, if S = 1, it reduces to the

linear ARDL(p, q) process.

The objective of Cho et al. (2020d) is to estimate the number of regimes, S. Not only does estimating

the number of regimes provide a means to test the adequacy of models built around an assumed number

of regimes (e.g. a NARDL model with two regimes defined using a single threshold value of zero), but it

also provides a means to model phenomena that exhibit complex nonlinearities involving several unknown

threshold values. For example, suppose that import prices exhibit both sign and size asymmetry with respect

to movements in the domestic exchange rate. To capture the sign asymmetry, a threshold value of zero is
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required. Two additional threshold values, one positive and one negative, would allow for import prices to

exhibit size asymmetry with respect to both appreciations and depreciations of the domestic exchange rate.

The addition of further threshold values would allow for more complex nonlinear relationships.

Cho et al. (2020d) examine the properties of several popular information criteria by simulation, including

the Akaike information criterion (AIC), the Schwarz information criterion (SIC) and the Hannan-Quinn

information criterion (HQIC), as well as modified versions of each criterion defined following Pitarakis

(2006), denoted pAIC, pSIC and pHQIC. For each S = 1, 2, . . . , S̄, Cho et al. (2020d) first estimate the

error variance of (10) by least squares. Let:

σ̂2n(S) := inf
λ

1

T

T∑
t=1

∆yt − ρyt−1 −
S∑
s=1

θ(s)′x
(s)
t−1(τ )− γ −

p−1∑
j=1

ϕj∆yt−j −
q−1∑
j=0

S∑
s=1

π
(s)′
j ∆x

(s)
t−j(τ )

2

,

where λ := (ρ,θ′, γ,ϕ′,π′, τ ′)′, θ := (θ(1),′, . . . ,θ(S)′)′, ϕ := (ϕ1, . . . , ϕp−1)
′, and π := (π

(1)′
0 , . . . ,

π
(S)′
0 , . . . , π

(1)′
q−1, . . . ,π

(S)′
q−1)

′, which generalises the error variance estimators used for the QLR test statistic

in the TARDL process. Next, the information criteria are computed as follows:

ICTARDL(τ ,p,q) := log(σ̂2n(S)) +
cT
T
nTARDL and IC◦TARDL(τ ,p,q) := log(σ̂2n(S)) +

cT
T
n◦TARDL,

where cT is a deterministic penalty term that satisfies cT /T → 0, nTARDL is the number of parameters

in the TARDL(τ , p, q) process and n◦TARDL is the number of parameters not including τ . Akaike (1973),

Schwarz (1978), and Hannan and Quinn (1979) set cT equal to 2, log(T ), and 2 log(log(T )), respectively,

while Pitarakis (2006) prefers the use of IC◦TARDL(τ ,p,q) to ICTARDL(τ ,p,q).

Cho et al. (2020d) conduct extensive simulation studies to determine which of the six information criteria

performs best. Setting k = 1, they separately examine the cases in which xt has no time drift and where

xt is driven by a time drift. Note that if ∆xt has a non-zero population mean, then xt is driven by a time

drift. The simulations reveal that the relative performance of the information criteria is influenced by a

combination of factors, including the sample size, the nature of the data generating process and whether or

not xt is driven by a time drift. In general, the standard SIC outperforms the other information criteria if

∆xt has zero population mean. However, if xt is driven by a time drift, the picture is more complex. In

this case, the modified SIC advocated by Pitarakis (2006) outperforms the other information criteria when

T is small. However, as the sample size increases, the standard SIC and Pitarakis’s SIC converge in terms of
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performance, with both dominating the other four information criteria. In addition, when the regime-specific

parameters of the TARDL process are similar, such that the TARDL process is locally close to the simpler

ARDL process, then Pitarakis’s SIC has a tendency to outperform relative to all competitors, including the

standard SIC.

4 ARDL Estimation by Quantile Regression

Following Xiao’s (2009) seminal analysis of quantile cointegration, a growing theoretical and empirical

literature has considered applications of quantile regression to integrated time series. Cho et al. (2015) were

the first to bring quantile regression to the ARDL literature, yielding the quantile autoregressive distributed

lag (QARDL) process. The QARDL process captures both the long-run and short-run relationships between

yt and xt at any desired location in the conditional distribution. Not only does this allow researchers to focus

on specific quantiles of interest but, by providing a framework to test the equality of the QARDL coefficients

across quantiles, it provides a means to study locational asymmetry, which arises if the QARDL parameters

vary across quantiles. Cho et al. (2015) illustrate the nature of locational asymmetry with an application to

dividend policy in the US, showing that dividend smoothing is stronger and that the long-run target payout

ratio is higher at the upper quantiles of the conditional distribution of dividends.

Starting with the ARDL model (1), for each ξ ∈ (0, 1), we may write:

yt = γ∗(ξ) +

p∑
j=1

φj∗(ξ)yt−j +

q∑
j=0

θj∗(ξ)
′xt−j + εt(ξ), (11)

where (γ∗(ξ), φ1∗(ξ), . . . , φp∗(ξ),θ0∗(ξ)
′, . . . ,θq∗(ξ)

′)′ is the quantile coefficient of the QARDL process,

and εt(ξ) is the quantile error, from which the linear quantile long-run relationship can be obtained as

yt = µ∗(ξ)+β∗(ξ)
′xt+ut(ξ), where µ∗(ξ), β∗, and ut(ξ) will be defined in Section 4.1, below. Estimation

of the quantile coefficients enables the researcher to conduct inference on yt andxt at any desired conditional

quantile. Cho et al. (2015) provide relevant theory on the estimation and inference on the parameters in (11)

along with an empirical application to post-war dividend smoothing in the US.

Cho et al. (2020a) propose a quantile version of the NARDL process in (6). That is, for each ξ ∈ (0, 1),
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the quantile nonlinear autoregressive distributed lag (QNARDL) process is defined as:

yt = γ∗(ξ) +

p∑
j=1

φj∗(ξ)yt−j +

q∑
j=0

(θ+j∗(ξ)
′x+
t−j + θ−j∗(ξ)

′x−t−j) + εt(ξ), (12)

where x+
t and x−t are the same as in (5) and the quantile coefficients (γ∗(ξ), φ1∗(ξ), . . . , φp∗(ξ),θ

+
0∗(ξ)

′,

. . . ,θ+q∗(ξ)
′, θ−0∗(ξ)

′, . . . ,θ−q∗(ξ)
′)′ can be used to explore quantile variation in the asymmetric relationship

embodied by the NARDL process. The QNARDL process represents a synthesis of the QARDL and

NARDL processes. For some coefficients β+
∗ (ξ) and β−∗ (ξ) and a stationary variable ut(ξ) as defined

in Section 4.2, the long-run relationship is given by yt = β+
∗ (ξ)′x+

t + β−∗ (ξ)′x−t + ut(ξ). As with the

NARDL model, the use of partial sum processes introduces sign asymmetry in both the long-run and the

short-run. Meanwhile, as with the QARDL model, the use of quantile regression allows for locational

asymmetry. Continuing with the example of dividend policy from Cho et al. (2015), the switch from a

QARDL specification to a QNARDL specification would allow for sign asymmetry with respect to earnings

news coupled with locational asymmetry across the conditional distribution of dividends.

4.1 Estimation and Inference for the QARDL Model

Cho et al. (2015) note that the QARDL process (10) can be equivalently converted into two different forms.

First, following Pesaran and Shin (1998), the QARDL process can be expressed as follows:

yt = γ∗(ξ) + x′tγ∗(ξ) +

p∑
j=1

φj∗(ξ)yt−j +

q−1∑
j=0

∆x′t−jδj∗(ξ) + εt(ξ), (13)

where γ∗(ξ) :=
∑q

j=0 θj∗(ξ) and δj∗(ξ) := −
∑q

i=j+1 θi∗(ξ). The long-run quantile relationship is yt =

µ∗(ξ)+x
′
tβ∗(ξ)+ut(ξ), where µ∗(ξ) := γ∗(ξ) (1−

∑p
i=1 φi∗(ξ))

−1, β∗(ξ) := γ∗(ξ) (1−
∑p

i=1 φi∗(ξ))
−1

and ut(ξ) is a stationary process defined by {∆xt, εt(ξ),∆xt−1, εt−1(ξ), . . .}. Further, the following

error-correction form can be derived from (13):

∆yt = γ∗(ξ) + ρ∗(ξ)(yt−1 − β∗(ξ)′xt−1) +

p−1∑
j=1

ϕj∗(ξ)∆yt−j +

q−1∑
j=0

πj∗(ξ)
′∆xt−j + εt(ξ), (14)

19



where, for ` = 1, 2, . . . , p− 1 and j = 1, 2, . . . , q − 1:

ρ∗(ξ) :=

p∑
j=1

φj∗(ξ)− 1, π0∗(ξ) := θ0∗(ξ), ϕ`∗(ξ) := −
p∑

i=`+1

φi∗(ξ), and πj∗ := −
p∑

i=j+1

θ∗i(ξ).

Cho et al. (2015) exploit these two different representations to estimate the long-run parameter, β∗(ξ),

and the other short-run parameters in (14). Specifically, they first estimate the parameters in (13) by

quantile regression following Koenker and Bassett (1978). That is, the quantile-specific parameters can

be consistently estimated by (γ̃T (ξ), φ̃T,1(ξ), . . . , φ̃T,p(ξ), θ̃T,1(ξ)
′, . . . , θ̃T,q(ξ)

′)′, which minimises:

∑
t

ζξ

yt − γ(ξ)−
p∑
j=1

φj(ξ)yt−j −
q∑
j=0

θj(ξ)
′xt−j

 ,

where ζξ(·) is the check function. Next, the quantile-specific long-run parameters are estimated by β̂T (ξ) :=(∑q
j=0 θ̃T,j(ξ)

)(
1−

∑p
i=1 φ̃T,i(ξ)

)−1
. The authors show that β̂T (ξ) is T -consistent and asymptotically

follows a mixed normal distribution. Estimating the short-run parameters in (14) is then straightforward.

After replacing β∗(ξ) with β̂T (ξ), the following is optimised with respect to the short-run parameters:

∑
t

ζξ

∆yt − γ(ξ) + ρ(ξ)(yt−1 − β̂T (ξ)′xt−1) +

p−1∑
j=1

ϕj(ξ)∆yt−j +

q−1∑
j=0

πj(ξ)
′∆xt−j

 .

Hence, the short-run parameters in (14) can be consistently estimated at rate
√
T and are asymptotically

normal.

In addition to the conditions given by Pesaran and Shin (1998), Cho et al. (2015) assume that E[∆xt] =

0 and that εt has a continuous and finite marginal probability density function so that quantile regression

can be applied. Furthermore, they assume that zt := [∆x′t, εt(ξ), ζξ(εt(ξ))]
′ is sufficiently regular to apply

the functional central limit theorem to the series that is linearly transformed from {. . . , z′t−1, z′t, z′t+1, . . .}

with linear coefficients forming an absolutely converging series. Under these assumptions, the authors show

that the limit distributions of the short-run and long-run parameter estimator are asymptotically normal and

a functional of Brownian motions, respectively.

Cho et al. (2015) extend the scope of the QARDL model by letting ξ be a set of multiple quantile

levels and examine the large sample properties of the long-run parameter estimators for ξ. By extending

the univariate quantile structure to the multivariate level, Cho et al. (2015) show that the long-run parameter
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estimator converges to the unknown long-run parameter at rate T , even when the long-run parameters are

estimated for multiple quantile levels. Furthermore, the authors demonstrate that the joint limit distribution

of the long-run parameter estimator is mixed-normal, such that a test statistic constructed using the Wald

(1943) testing principle asymptotically follows a χ2 distribution under the null.

4.2 Estimation and Inference for the QNARDL Model

The QNARDL process can be written in error correction form as:

∆yt = ρ∗(ξ)yt−1 + θ+∗ (ξ)′x+
t−1 + θ−∗ (ξ)′x−t−1 + γ∗(ξ)

+

p−1∑
j=1

ϕj∗(ξ)∆yt−j +

q−1∑
j=0

(
π+
j∗(ξ)

′∆x+
t−j + π−j∗(ξ)

′∆x−t−j

)
+ εt(ξ), (15)

for each ξ ∈ (0, 1), where the definition of the QNARDL quantile coefficients is similar to the NARDL case

and so, for brevity, we do not repeat it here. Letting ut−1(ξ) := yt−1 − β+
∗ (ξ)′x+

t−1 − β
−
∗ (ξ)′x−t−1 be the

quantile cointegration error, we can re-write (15) as follows:

∆yt = ρ∗(ξ)ut−1(ξ) + γ∗(ξ) +

p−1∑
j=1

ϕj∗(ξ)∆yt−j +

q−1∑
j=0

(
π+
j∗(ξ)

′∆x+
t−j + π−j∗(ξ)

′∆x−t−j

)
+ εt(ξ), (16)

where β+
∗ (ξ) := −θ+∗ (ξ)/ρ∗(ξ) and β−∗ (ξ) := −θ−∗ (ξ)/ρ∗(ξ). This error correction form of the QNARDL

process enables the researcher to estimate the unknown coefficients in a manner parallel to the NARDL case

outlined above. However, if the unknown long-run parameters are estimated by quantile regression directly,

then the singularity problem arises. Thus, Cho et al. (2020a) recommend that the QNARDL process should

be re-parameterised prior to estimation. Specifically, for each ξ ∈ (0, 1), let the long-run relationship be

represented as follows:

yt = ς∗(ξ) + λ∗(ξ)
′x+
t + η∗(ξ)

′xt + ut(ξ),

where xt ≡ x+
t +x−t . The long-run parameters (λ∗(ξ)

′,η∗(ξ)
′)′ can be estimated by quantile regression for

k = 1. With this estimator denoted by (λ̂T (ξ)′, η̂T (ξ)′)′, the long-run parameters are obtained by β̂
+

T (ξ) :=

λ̂T (ξ) + η̂T (ξ) and β̂
−
T (ξ) := η̂T (ξ). Under this re-parameterisation, the singularity problem does not

arise and the long-run parameter estimator converges to the true parameter value at rate T . Consequently,

the short-run parameters in (16) can be estimated by replacing ut−1 with ût−1(ξ) := yt−1 − β̂
+

T (ξ)′x+
t−1 −
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β̂
−
T (ξ)x−t−1 and then applying quantile regression. That is, one can consistently estimate the short-run

parameters by optimising:

∑
t

ζξ

∆yt − ρ(ξ)ût−1(ξ)− γ(ξ)−
p−1∑
j=1

ϕj(ξ)∆yt−j −
q−1∑
j=0

(
π+
j (ξ)′∆x+

t−j + π−j (ξ)′∆x−t−j

) ,

with respect to the short-run parameters.

Cho et al. (2020a) note that it is not straightforward to derive the limiting distribution of the long-run

parameter estimator, which hampers hypothesis testing. Consequently, in keeping with the estimation

procedure advanced by Cho et al. (2019), Cho et al. (2020a) first estimate (λ∗(ξ)
′,η∗(ξ)

′)′ by applying

the FM-OLS estimator of Phillips and Hansen (1990) to the quantile regression, and next estimate the

long-run parameters as described above. The resulting long-run parameter estimator is T -consistent, and

asymptotically follows a mixed normal distribution. Therefore, test statistics constructed using the Wald

(1943) principle converge to the standard χ2 distribution. Consequently, inference on the QNARDL model

proceeds in a similar manner to the NARDL model.

The regularity conditions assumed by Cho et al. (2020a) are almost identical to those in Cho et al. (2019).

The main difference stems from the fact that parameter estimation is conducted by minimising the check

function. Instead of imposing regularity conditions formed by regression errors, the authors assume the

regularity conditions formed by the check function applied to the regression error and impose the regularity

conditions in parallel to Cho et al. (2019). Lastly, if k > 1, one can estimate the trend models first and next

estimate the long and short-run equations sequentially, by analogy to Cho et al. (2020b). Due to the parallel

structure of these procedures, we do not repeat the discussion here in the interest of brevity.

5 Panel Data Extensions of the ARDL Model

In addition to the asymmetric and nonlinear ARDL variants discussed above, ARDL specifications and their

derivatives have also been applied in the context of dynamic panel data analysis. Two simple estimators

for panels with many time series observations for each of N groups are the traditional pooled estimators

(including the fixed and random effects estimators) and the Mean Group (MG) estimator of Pesaran and

Smith (1995). The first approach involves pooling the data together and estimating a single model under the

assumption that all of the model parameters aside from the intercepts are homogeneous across groups. At the
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other extreme, the MG estimator of Pesaran and Smith (1995) involves estimatingN separate models, where

all of the parameters are allowed to vary over groups. To summarise the distribution of these group-specific

parameters, one may simply take their mean value across groups. MG estimation of ARDL and NARDL

models has been applied in the analysis of exchange rate pass-through into import prices by Brun-Aguerre

et al. (2017).

Both the pooled and MG frameworks have limitations; the assumption of parameter homogeneity that is

central to the pooled estimators is restrictive, while the MG estimator does not make use of any homogeneity

restrictions, even if they are valid. This leads Pesaran et al. (1999) to pursue an intermediate approach

that they refer to as the Pooled Mean Group (PMG) estimator, which mimics the structure of the ARDL

model in a panel setting under the assumption of long-run homogeneity, while allowing the short-run

parameters and error variances to differ across groups. The authors note that there are often good reasons

to believe that equilibrium relations should be common across groups but that the same is not typically true

of short-run dynamic parameters. This reasoning justifies their pursuit of a hybrid approach to estimation

that makes use of pooling for the estimation of long-run parameters and averaging for the estimation of

short-run parameters. Consequently, the interpretation of the PMG model follows easily from that of the

linear ARDL model of Pesaran and Shin (1998), simply transferred to a panel data setting under long-run

homogeneity. Due to its intuitive structure and relative ease of implementation, the PMG estimator has been

highly influential, with approximately 4,000 citations to date according to Google Scholar.

5.1 Estimation and Inference for the PMG Model

Suppose that one wishes to estimate an ARDL (p, q, q, . . . , q) model of the following form using a panel

dataset with groups indexed by i = 1, 2, . . . , N and time periods indexed by t = 1, . . . , T , where T is

sufficiently large to allow the model to be estimated consistently for each group:2

yit =

p∑
j=1

λij∗yi,t−j +

q∑
j=0

δ′ij∗xi,t−j + γ ′i∗dt + εit, (17)

where xit and dt are k×1 and s×1 vectors of regressors, respectively, while the λij∗s are unknown scalars

and the δij∗s and γi∗s are k × 1 and s × 1 vectors of unknown parameters to be estimated. Note that (17)

2It is straightforward to allow for different lag orders associated with each of the variables in xit.
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can be re-parameterised as follows:

∆yit = φi∗yi,t−1 + β′i∗xit +

p−1∑
j=1

λ∗ij∆yi,t−j +

q−1∑
j=0

δ∗′ij∆xi,t−j + γ ′i∗dt + εit, (18)

where φi∗ := − (1 −
∑p

j=1 λij∗), βi∗ :=
∑q

j=0 δij∗, λ
∗
ij := −

∑p
m=j+1 λim∗, j = 1, . . . , p − 1 and

δ∗ij := −
∑q

m=j+1 δim∗, j = 1, . . . , q− 1, i = 1, . . . , N . By stacking the time series observations for each

group to obtain yi := (yi1, . . . , yiT )′ and Xi := (xi1, . . . ,xiT )′, (18) can be re-written as follows:

∆yi = φi∗yi,−1 + Xiβi∗ +

p−1∑
j=1

λ∗ij∆yi,−j +

q−1∑
j=0

∆Xi,−jδ
∗
ij + Dγi∗ + εi, (19)

where D := (d1, . . . ,dT )′ is a T × s matrix of observations on the deterministic regressors, such as

intercepts and time trends, and yi,−1 and ∆Xi,−j are T × 1 and T × k matrices obtained by stacking

yi,t−1 and xi,t−j , respectively.

The long-run coefficients on Xi can be obtained as θi∗ = −βi∗/φi∗. Pesaran et al. (1999) assume

long-run homogeneity, such that θi∗ = θ∗ for every i = 1, . . . , N . Consequently, the long-run relationship

for every cross-section unit has the same structure as the long-run relationship embedded in the ARDL

model of Pesaran and Shin (1998). This allows (19) to be re-written compactly as:

∆yi = φi∗ξi(θ∗) + Wiκi∗ + εi, i = 1, . . . , N, (20)

where:

ξi(θ∗) := yi,−1 −Xiθ∗ i = 1, . . . , N,

is the error correction component, Wi = (∆yi,−1, . . . ,∆yi,−p+1, ∆Xi,∆Xi,−1, . . . ,∆Xi,−q+1,D), and

κi∗ := (λ∗i1, . . . , λ
∗
i,p−1, δ∗′i0, δ

∗′
i1, . . . , δ

∗′
i,q−1,γ

′
i∗)
′.

Estimation of (20) is complicated by three factors: (i) the equation for each group is nonlinear in φi∗ and

θ∗; (ii) the long-run homogeneity assumption introduces cross-equation parameter restrictions; and (iii) the

error variances exhibit heterogeneity across groups. Pesaran et al. (1999) propose a maximum likelihood

estimation framework in which the homogeneous long-run parameters are estimated by pooling, while

group-wide mean estimates of the heterogeneous short-run parameters and error-correction coefficients are

obtained by taking averages across groups. Hence the nomenclature “pooled mean group” estimation.
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Pesaran et al. (1999) develop separate asymptotic theories for the PMG estimators in the case that the

regressors, xit, are stationary and non-stationary. Under stationarity, the authors demonstrate the consistency

and asymptotic normality of the PMG estimators and show that the long- and short-run parameter estimators

share a common convergence rate of
√
T . By contrast, under the assumption that the regressors are first-order

integrated processes, the asymptotic analysis is complicated by the fact that the ML estimators of the

long-run and the short-run parameters converge to their true values at different rates (T and
√
T , respectively).

In this case, for a fixed N and as T → ∞ , the PMG estimator asymptotically follows a mixed-normal

distribution.

These results are obtained under standard conditions on the behaviour of the disturbance terms, as well

conditions that ensure the dynamic stability of the model and allow for identification. By analogy to the

ARDL model of Pesaran and Shin (1998), in the case of non-stationarity, Pesaran et al. (1999) further

assume that the variables in xit are not cointegrated among themselves. The strongest assumption that is

invoked is the long-run homogeneity condition from which the PMG estimator draws its name. Not only

is this assumption testable using Hausman-type tests but it is defensible in many practical applications, as

heterogeneity across groups may often be confined to the dynamic parameters and the error variances. The

authors further note that, in practice, the most challenging aspect of working with the PMG estimator is

often the interpretation of the heterogeneity, as it can be difficult to exclude the possibility of group-specific

omitted variables and/or measurement errors correlated with the regressors.

6 The Spatio-Temporal ARDL Model

The final ARDL variant that we consider is another panel data implementation of ARDL, this time motivated

by the increasing availability of large spatial time series datasets. The spatio-temporal autoregressive

distributed lag (STARDL) model proposed by Shin and Thornton (2019) extends the popular spatial dynamic

panel data model by allowing both spatial and temporal coefficients to differ across spatial units. The

STARDL(p, q) model is specified as follows:

yit =

p∑
`=1

φi`∗yi,t−` +

p∑
`=0

φ∗i`y
∗
i,t−` +

q∑
`=0

π′i`∗xi,t−` +

q∑
`=0

π∗′i`x
∗
i,t−` + αi∗ + uit, (21)

for i = 1, . . . , N and t = 1, . . . , T , where yit is a scalar dependent variable for the ith spatial unit at time t,

xit = (x1it, . . . , x
K
it )′ is aK×1 vector of exogenous regressors, πi`∗ = (π1i`∗, . . . , π

K
i`∗)
′ is aK×1 vector of
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parameters and likewise for yi,t−` and xi,t−` and their associated parameters. Spatial interactions between

units, both contemporaneously and with lags, are captured via the spatial variables, y∗it and x∗it, defined as:

y∗it ≡
N∑
j=1

wijyjt = w′iyt with yt
N×1

= (y1t, . . . , yNt)
′ , (22)

x∗it
K×1

=
(
x1∗it , . . . , x

K∗
it

)′ ≡
 N∑
j=1

wijx
1
jt, . . . ,

N∑
j=1

wijx
K
jt

′ = (w′i ⊗ IK)xt; xt
NK×1

=


x1t

...

xNt

 , (23)

where w′i = (wi1, . . . , wiN ) denotes a 1 × N vector of non-stochastic spatial weights, which are assumed

to be known a priori, with wii = 0.

Stacking the N individual STARDL (p, q) equations in (21), Shin and Thornton (2019) obtain the

following spatial system:

yt =

p∑
`=1

Φ`∗yt−` +

p∑
`=0

Φ∗`Wyt−` +

q∑
`=0

Π`∗xt−` +

q∑
`=0

Π∗` (W ⊗ IK)xt−` +α∗ + ut, (24)

where W = (w1, · · · ,wN )′ denotes the N × N spatial weights matrix, α∗ = (α1∗, . . . , αN∗)
′, Φ`∗ =

diag(φ1`∗, · · · , φN`∗) for ` = 1, . . . , p and Φ∗` = diag(φ∗1`, · · · , φ∗N`) for ` = 1, . . . , p, while Π`∗ =

diag(π′1`∗, · · · ,π′N`∗) and Π∗` = diag(π′1`∗, · · · ,π′N`∗) for ` = 0, 1, . . . , q. The STARDL model is both

relatively simple to estimate and also highly adaptable, as it nests several popular spatial dynamic panel data

models, including the dynamic spatial Durbin model analysed by Lee and Yu (2010) and Elhorst (2014) and

the heterogeneous spatial autoregressive panel data model of Aquaro et al. (2021).

6.1 Estimation and Inference for the STARDL Model

Shin and Thornton (2019) propose both quasi-maximum likelihood (QML) and control function (CF) based

instrumental variables estimators. Both estimators are
√
T -consistent at the individual level and both

asymptotically follow normal distributions. The QML estimation algorithm is standard and similar to that

recently proposed by Aquaro et al. (2021). For the CF based estimator, Shin and Thornton (2019) begin by

re-writing (21) as follows:

yit = φ∗i0y
∗
it + θ′iχit + uit,
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where χit = (yi,t−1, . . . , yi,t−p, yi,t−1, . . . , y
∗
i,t−p,x

′
it, . . . ,x

′
i,t−q,x

∗′
it , . . . ,x

∗′
i,t−q, 1)′ and θi denotes the

vector of associated parameters. Estimation proceeds in two steps. In the first step, one obtains the reduced

form residuals:

v̂it = y∗it −ψ′izit,

where zit are instruments obtained internally from the model.3 In the second step, one estimates the

following by OLS:

yit = φ∗i0y
∗
it + θ′iχit + ρiv̂it + uit.

The authors show that this procedure yields consistent and asymptotically normal estimates of the STARDL

parameters.

The properties of both the QML and CF based estimators are obtained under standard conditions on the

behaviour of the disturbance terms, as well as identification conditions and conditions related to dynamic

stability of the model. The variables entering the model are assumed to be stationary for reasons of

expediency; the extension to the case of non-stationarity in the context of spatial data would bring with

it several challenges and would represent a substantial contribution to the literature. The disturbance terms

are assumed to be serially uncorrelated but need not be i.i.d.. In particular, they are allowed to exhibit

heteroskedasticity. The serial correlation assumption is not onerous, as the inclusion of sufficient lags in

the STARDL model should typically be sufficient to capture the autocorrelation structure in the data. The

spatial weights are assumed to be non-stochastic and are subject to common normalisation conventions,

while an addition condition limiting the degree of contemporaneous spatial feedback is required to ensure

that the variance of the disturbance terms is finite. These conditions are in widespread use in the theoretical

literature on spatial panel data models and are not unduly restrictive.

Spatial models, including the STARDL model, have an implicit network structure and so many of the

popular tools of network analysis, including centrality statistics and clustering algorithms, can be used to

facilitate their interpretation. Their use is particularly advantageous in the context of the STARDL model,

where spatial dynamic interactions are governed by an array of parameters, unlike simple homogeneous

parameter models in which interest primarily centres on a single spatial parameter. Shin and Thornton

(2019) make use of two quantities for this purpose: (i) individual spatio-temporal dynamic multipliers based

3For example, one may obtain the instrumental variables internally from the spatially lagged exogenous and predetermined
variables, e.g. (W2yt−1,W

2xt, · · · ).
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on work by Shin et al. (2014); and (ii) system diffusion multipliers. The diffusion multipliers represent a

novel technique to measure the joint impacts of xt on yt+h in space and time for h = 0, 1, 2, . . .. To obtain

the diffusion multipliers, it is first necessary to re-write (24) as follows:

Φ̃ (L)yt = Π̃ (L)xt + ũt, (25)

where Φ̃ (L) = IN −
∑p

`=1 Φ̃`∗L
`, Π̃ (L) =

∑q
`=0 Π̃`∗L

`, ũt = (IN −Φ∗0W (L))−1 ut and Φ̃`∗

and Π̃`∗ are the coefficients of the endogenous and exogenous variables obtained from (24), respectively.

Premultiplying (25) by
[
Φ̃ (L)

]−1
, one obtains:

yt = B (L)xt +
[
Φ̃ (L)

]−1
ũt,

where B (L) :=
[
Φ̃ (L)

]−1
Π̃ (L) =

∑∞
j=0 Bj∗L

j and where the diffusion multipliers, Bj∗ for j =

0, 1, . . ., can be evaluated as follows:

Bj∗ = Φ̃1∗Bj−1∗ + Φ̃2∗Bj−2∗ + · · ·+ Φ̃j−1∗B1∗ + Φ̃j∗B0∗ + Π̃j∗, j = 1, 2, . . . ,

where B0∗ := Π̃0∗ and Bj∗ = 0 for j < 0 by construction. The N ×NK matrix of cumulative diffusion

multiplier effects is given by:

dHx∗ =

H∑
h=0

∂yt+h
∂x′t

=
H∑
h=0

Bh∗, H = 0, 1, 2, . . .

As with the use of cumulative dynamic multipliers in the NARDL literature, the spatio-temporal dynamic

multipliers and diffusion multipliers proposed by Shin and Thornton (2019) can be used to illuminate the

traverse to equilibrium following a perturbation to the system, thereby providing an intuitive insight into

both the dynamic and long-run properties of the STARDL model. Shin and Thornton (2019) leverage recent

developments in the econometric analysis of networks and connectedness due to Diebold and Yilmaz (2014)

and Greenwood-Nimmo, Nguyen, and Shin (in press) to provide a simple and intuitive summary of the

impacts of {xjt}Nj=1 on {yit}Ni=1. In this way, Shin and Thornton show that the diffusion multipliers can be

used to obtain two simple and easily interpreted measures of the role of each node within the network: (i) its

external motivation, which captures the extent and direction to which each node is steered by the network;
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and (ii) its systemic influence, which captures the relative importance of each node within the network. The

authors apply their framework to analyse the effect of enemy casualties on civilian deaths across the 18

Governorates of Iraq in the aftermath of the 2003 invasion. Their results indicate that violence is used both

as a means to maintain influence in emergent political institutions and also in reprisal for past acts.

7 Concluding Remarks

In this paper, we survey the literature on the ARDL model. Given the existence of several excellent

surveys focusing on the case of stationary distributed lags (e.g. Griliches, 1967; Nerlove, 1972; Hendry

et al., 1984; Wickens and Breusch, 1988), our starting point is the more challenging setting in which the

ARDL specification is applied to cointegrated non-stationary time series (Pesaran and Shin, 1998) or time

series with mixed orders of integration (Pesaran et al., 2001). We present several recent extensions of this

model, including the NARDL and TARDL models associated with Shin et al. (2014) and Cho et al. (2019,

2020b,c,d), the QARDL and QNARDL models developed by Cho et al. (2015) and Cho et al. (2020a),

the pooled mean group panel data estimator of Pesaran et al. (1999) and the spatio-temporal ARDL model

proposed by Shin and Thornton (2019).

The large body of research that we survey above highlights the adaptability of the ARDL specification

but it should not be taken as evidence that all of the worthwhile avenues for development have already been

explored. There are three areas in particular that have yet to be developed and that hold considerable promise.

The first is to develop theoretical and applied methods that combine the ARDL and NARDL specifications

with other popular regime-switching mechanisms, such as Markov-switching and smooth transition models.

The second objective is the development of a system extension of the NARDL/TARDL model, which would

provide a valuable framework for the analysis of asymmetric and nonlinear phenomena in multivariate

systems. The last is the development of new panel ARDL models that can jointly accommodate both spatial

and factor dependence. Developments in this area promise substantial contributions to the fast-growing

literature on the unified modelling of cross-section dependence in panels.
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