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1 Introduction

Profit-sharing partnerships are common in human-capital-intensive professional ser-

vices (Levin and Tadelis 2005). For example, a business owner needs a manager to

run the business together or hires a management consultant to reorganize their busi-

ness. Lawyers and attorneys in the same field often work together at the same firm

or start their law firm as partners and associates. Firms engage in product or tech-

nology partnerships to develop new products or improve existing ones. A principal

investigator brings other researchers or institutions to form an R&D consortium for

research and commercialization.

When these partnerships are contractual, the two parties—a principal and an

agent—can first negotiate over a profit-sharing rule, after which they take produc-

tive actions (or exert efforts) that generate the return or profit in their partnership.

The return might depend not only on individual-specific contributions of the two

parties’ efforts but also on a joint contribution of their efforts. The former com-

ponent is determined by each party’s productive ability, captured by heterogeneity

in their productivity of efforts; the latter component is governed by the degree of

complementarity in their efforts. Further, the return from their teamwork might also

depend on whether they exert efforts simultaneously or sequentially.

In this paper, we study how productivity of efforts, complementarity in efforts,

and commitment of the principal’s effort affect profit sharing in partnerships. A

profit-sharing rule dictates an allocation of ownership, characterized by each party’s

bargaining power or weight in the final negotiation over how to share the return or

profit from their partnership. We characterize the combined effects of complemen-

tarity and asymmetric productivity on the equilibrium bargaining weights in negoti-

ation, and compare those effects between the two cases in which the timing of effort

choices is either simultaneous or sequential. Our analysis provides managerial im-
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plications for contracting and governance structure regarding commitment, surplus

maximization in partnerships, and employee selection process.

We consider a partnership game with multi-stage negotiations of the following

form: In the initial negotiation phase, a principal (who initially has all the bargain-

ing power) and an agent jointly decide their profit-sharing rule—that specifies their

bargaining weights in the final negotiation—and make an immediate transfer. In

the action phase, the players individually choose their effort levels either simulta-

neously or sequentially (with the principal choosing first). In the final negotiation

phase, the two players jointly decide the terms of compensation, i.e., the sharing of

the realized revenue. At this stage, the players have bargaining weights that were

agreed upon in the initial negotiation. We use the concept of negotiation equilibrium

where joint decisions conform to the standard bargaining solution.

We first present the benchmark case in which the two players have no difference

in productivity. This benchmark allows us to focus on the effect of complementarity

in efforts on the optimal bargaining weight, and compare those effects between the

two games that differ in the timing of effort choices. We find that when the players

choose efforts simultaneously in the action phase, the equilibrium entails an equal

bargaining weight chosen in the initial negotiation for splitting the return in the

final negotiation, regardless of the degree of complementarity; however, when the

principal chooses her effort first, then the agent gets more than half the bargaining

weight.1 This is because the marginal contribution of each player to the surplus is

symmetric, and so the surplus is maximized when each player has an equal share

in the simultaneous-choice case. By contrast, the principal choosing first would be

willing to give more share to the agent in order to induce him to exert enough effort

that further complements in maximizing the total surplus.

We generalize our analysis to an environment in which the two players have

1We use female pronouns for the principal and male pronouns for the agent.
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heterogeneous productivity of efforts in generating the return. We show three main

results. First, in both games, given any degree of complementarity, the more pro-

ductive the agent, the higher bargaining weight he receives in equilibrium. This

result is intuitive: A more productive partner gets a higher share of the return. Sec-

ond, in both games, given the agent’s relatively higher productivity, the stronger the

complementarity, the lower bargaining weight the agent receives. This is because a

higher degree of complementarity creates more room for the less productive prin-

cipal to contribute to the surplus by increasing her effort level. A higher share to

the principal, on the one hand, will increase the principal’s effort and thus the sur-

plus; on the other hand, it will decrease the agent’s effort and thus the surplus. But

the principal’s marginal contribution to the surplus is big enough so that the former

effect offsets the latter.

Third, given some degree of complementarity, the principal receives a higher

bargaining weight in the game with sequential effort choice than in the game with

simultaneous effort choice if the agent is sufficiently more productive than the prin-

cipal, reversing the benchmark result. The principal who is choosing first is willing

to give the agent more share (than when choosing simultaneously) to induce him

to exert more effort. But if the agent is much more productive, the effect that the

principal has on the surplus by exerting more effort, induced by getting more share

herself, is greater when she chooses first than when choosing simultaneously. The

latter effect outweighs the former effect.

Our analysis delivers several managerial implications. First, with stronger com-

plementarity, allocating more bargaining power (or share of ownership) to the less

productive partner—whether it is the principal or the agent—maximizes the surplus

and is to the principal’s benefit. Second, the principal’s commitment to effort mat-

ters when the partnership exhibits complementarity in partners’ efforts, whereas it

does not affect the optimal allocation of power regardless of heterogeneous pro-
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ductivity when there is no complementarity. Third, there are always surplus gains

when the players choose efforts sequentially relative to when they choose simulta-

neously, and such gains are always higher for a higher degree of complementarity

or a higher productivity of the agent. This implies that the principal can benefit

more from commitment by partnering with the agent of a high level of productivity

or complementarity. Lastly, our results have an interesting implication for optimal

hiring of an agent in a partnership. The principal shows an increasing marginal

rate of substitution between the agent’s productivity and complementarity. This im-

plies that in the perspective of the principal selecting her partner among the pool

of potential agents who differ in the degree of complementarity and the level of

productivity, hiring an “all-rounder” partner may not necessarily be optimal.

Related Literature. Our paper is related to a large body of contract theory liter-

ature. The relational contracts literature has provided insights on self-enforcement

of agreements in environments with repeated play and limited external enforce-

ment (e.g., Levin 2003; Miller and Watson 2013) and renegotiation in environ-

ments with external enforcement of long-term contractual relationships (e.g., Wat-

son, Miller and Olsen 2020). Another line of literature examines the hold-up prob-

lem in short-term trading relationships (e.g., Aghion, Dewatripont and Rey 1994;

Hart and Moore 1988).2 Most works in the contract literature have focused on the

theoretical properties of contractual relations, providing insights into characterizing

optimal contracts in settings of moral hazard or hidden information. Our focus is

not on those issues related to enforcement, renegotiation, or hold-up, but on dis-

covering how the technological details of contractual settings influence outcomes

2Several papers show that if the contract could specify the ownership and its timing of enforce-
ment, then the contract achieves efficient investments or efforts despite them being unobserved (e.g.,
Demski and Sappington 1991; Edin and Hermalin 2000; Nöldeke and Schmidt 1998).
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in partnerships.3 Those details include the nature of individual actions (productivity

and complementarity) and the timing of actions (simultaneous or sequential).

Our model of teamwork and negotiations is a direct extension of a partnership

game with joint decisions presented in Watson (2013, Chap. 21, ex. 10). To ana-

lyze such a game, we can combine subgame perfection with the standard bargaining

solution, together defining a negotiation equilibrium that identifies behavior at both

individual- and joint-decision nodes.4 While we closely follow the tools of Wat-

son (2013) in solving for an equilibrium, our model is generalized to incorporate

various traits of teamwork that are often observed and important in profit-sharing

partnerships but were not fully taken into account in Watson’s example.

In terms of the theme of our paper—profit-sharing partnerships, the most closely

related paper is Levin and Tadelis (2005).5 They show that profit-sharing partner-

ships perform better than wage-paying corporations when human capital is crucial

in determining product or service quality and when market monitoring of quality is

weak. In their model, they assume an equal sharing of profits among partners but

note that their results will continue to hold for a broader class of sharing rules that

redistribute profits from high-quality partners to marginal partners. In our model,

negotiation between partners endogenously determines a profit-sharing rule. The

primary interest of our paper is in studying how complementarity and productivity

among partners shape the profit-sharing rule, which in turn affects the performance

across partnerships with different forms of profit redistribution.

3One-period partnership games have been studied by Holmström (1982); repeated partnership
games by Radner (1985, 1986) and Radner, Myerson and Maskin (1986). This line of literature
focuses on the efficiency property of equilibria in partnerships and not on partnership formation
itself, so their games do not have a negotiation stage in which partners decide sharing rules.

4A negotiation equilibrium is a special case of contractual equilibrium developed by Miller and
Watson (2013).

5Related, Liu, Albert Ma and Mak (2018) study a principal contracting with a group of experts
for service or production and show that the principal can implement the first best by delegating all
decisions to an expert-organization. See also Makris and Siciliani (2013) and Che and Chung (1999)
for providing incentives to agents in partnerships.
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Lastly, our paper is broadly related to the vast literature on corporate gover-

nance system.6 Zingales (2002) defines a governance system as “the complex set

of constraints that shape the ex-post bargaining over the quasi-rents generated in

the course of a relationship” (p. 498). In our paper, the returns to a partnership

are distributed only when the two parties agree on a profit-sharing rule and an

ex-post negotiated compensation or salary. The ex-ante negotiated profit-sharing

rule, which reflects the allocation of ownership and organizational structure, affects

the process through which quasi-rents are distributed.7 In the spirit of Zingales’s

(2002) definition, our model fits in the literature on corporate governance. The lit-

erature has been controversial about whether larger equity ownership by managers

positively affects corporate performance. Some empirical studies find a significant

positive impact of insider ownership on firm performance (e.g., Cole and Mehran

1998; Kaplan 1989). Others argue that the effect of insider ownership is ambiguous

due to the issues of endogeneity and dependence on assumptions that researchers

have made (e.g., Cheung and Wei 2006; Core, Guay and Larcker 2003; Demsetz

and Lehn 1985). Our paper provides theoretical implications on the efficacy of

ownership allocation in maximizing profits or total surplus in partnerships.

The rest of this paper is organized as follows. In Section 2, we present a model

of partnership game and review the equilibrium concept. In Section 3, we analyze

the benchmark case. In Section 4, we present our main results on the effects of

complementarity, productivity, and commitment. In Section 5, we discuss manage-

rial implications and related issues. In Section 6, we conclude. All proofs are in

Appendix A.

6For literature surveys, see Farinha (2003), Shleifer and Vishny (1997), and Zingales (2002).
7In our model, the ex-post bargaining over quasi-rents results in the principal extracting all the

quasi-rents. See Section 5.1.

6



2 A Model of Teamwork and Negotiations

2.1 Partnership Game

We consider a modified version of the partnership game with multi-stage negoti-

ations presented in Watson (2013, Chap. 21, ex. 10), from which we adopt his

descriptions and notations.

Two players, indexed by i ∈ {1, 2}, each contribute effort to an enterprise.

Denoting by π1 and π2 the two players’ bargaining powers (or weights), we assume

that initially player 1 has full bargaining power, i.e., π1 = 1 and π2 = 0. We often

refer to player 1 as the principal and player 2 as the agent.

At the initial joint decision stage, players 1 and 2 choose g ∈ [0, 1], which

will be player 1’s bargaining weight in the final negotiation. They also agree on a

transfer w ∈ (−∞,∞), which is interpreted as an immediate payment from player

2 to player 1 in exchange for player 2’s bargaining weight 1 − g.8 If they fail to

agree, then the game ends, and they each earn zero payoff.

After they agree on (g, w), the players individually choose their effort levels.

Let x ∈ [0,∞) be player 1’s effort and y ∈ [0,∞) be player 2’s effort. The cost of

effort is given by x2 for player 1 and y2 for player 2.9 We consider two scenarios in

terms of the timing of effort choices:

SM. Players simultaneously choose their efforts; neither can observe the other’s

effort when choosing.

SQ. Player 1 first chooses x, and player 2 chooses y after observing x.10

8The players can agree to allocate some power to player 2 in a way that player 2 buys the shares
1− g of company stock from player 1 at the price of w, becoming a part owner of the company.

9The specific functional form for the cost keeps the analysis tractable; we conjecture that the
qualitative results of our paper would remain intact for other convex costs.

10We discuss briefly in Section 2.2 why we only consider the case of player 1 choosing first.
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At the final stage after both players observe x and y, they jointly decide whether

and how to split the return of their effort choices. Let f(x, y) denote the revenue

from their partnership. In this final negotiation, player 1’s bargaining weight is

g, and player 2’s bargaining weight is 1 − g. If the players agree on a transfer

t ∈ (−∞,∞), then player 1 collects the revenue of f(x, y) and pays t to player 2.

The transfer t is interpreted as player 2’s salary or dividend. If the two players fail

to agree on t, then their partnership dissolves, in which case they receive no revenue

but have already incurred their effort costs and made the initial stage transfer of w.

We assume that the revenue increases with each player’s effort level, i.e., fx ≥

0 and fy ≥ 0; and that the players’ efforts are complementary in generating the

revenue, i.e., fxy ≥ 0. For simplicity and tractability of analysis, we consider the

following specification of f(x, y):

f(x, y) = 2(x+ αy + κxy) (1)

where the revenue is composed of individual-specific contributions, x + αy, and a

joint contribution, κxy.11 Here, α ∈ (0,∞) represents the marginal contribution

of player 2’s effort to the individual-specific component of the revenue relative to

player 1’s effort. With minor abuse of terminology, we will interpret α as player

2’s relative marginal productivity.12 A higher α represents a greater productive

ability of player 2 in teamwork, and α > 1 characterizes a case in which player

2 is relatively more productive than player 1. The coefficient κ ∈ [0, 1] captures

11We scale (x + αy + κxy) by two for analytical simplicity; any monotonic increasing trans-
formation does not affect the qualitative results of our paper. The multiplicative form of the joint
contribution κxy is convenient to study.

12In the usual sense, the marginal productivity of player 2’s effort to the revenue is defined as
fy(x, y) = α+ κx; however, for our purpose we define it as the marginal productivity that pertains
only to the individual-specific component of the revenue. In line with this definition, we assume that
the players’ asymmetric marginal productivity does not affect the joint contribution component.
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the degree of complementarity in players’ efforts.13 The case of κ = 0 represents

no complementarity, and the higher κ, the stronger the complementarity in players’

efforts.

We will henceforth refer to the partnership game with simultaneous effort choices

at the individual decision stage as the SM game, and to that with sequential effort

choices as the SQ game. The game tree is illustrated in Figure 1, adapted from Wat-

son (2013, Chap. 21), with the payoffs indicated at the terminal nodes. Surrounded

solid circles represent joint decision nodes, and solid circles represent individual

decision nodes. A dashed line around player 2’s decision node indicates that player

2 makes his choice without observing player 1’s choice, corresponding to the SM

game.

Figure 1: Game tree for the SM and SQ games

13The restriction κ ≤ 1 suffices for the uniqueness of equilibrium and an interior solution
for effort level. The necessary and sufficient condition for a unique interior solution is 1 >
κ2(g(α, κ)(1− g(α, κ)) in the SM game and 1 > 2κ2(g(α, κ)(1− g(α, κ)) in the SQ game, where
g(α, κ) is endogenously determined in equilibrium.
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2.2 Discussion of the Model

We generalize the model of Watson (2013, Chap. 21, ex. 10) in the following

three ways. First, we introduce a productivity parameter α ∈ (0,∞) in the rev-

enue function, allowing for heterogeneity in the players’ productivity of efforts.

The symmetric case of α = 1, in which the two players contribute equally to the

teamwork, is a useful benchmark we will examine in Section 3. Second, we intro-

duce a complementarity parameter κ ∈ [0, 1]. The revenue function in Watson’s

model is f(x, y) = x + 2y, which is a special case of our revenue function with

α = 2 and κ = 0. Such generalizations allow us to study the effects of asymmetric

productivity and strategic complementarity in efforts on the equilibrium.

Third, we consider the issue of commitment by analyzing both the SM and SQ

games, while Watson’s model only considers the SM game. The SQ game captures

the situation in which player 1 commits to her effort before player 2 chooses his

effort. The comparison between the SM game and the SQ game provides manage-

rial implications regarding the value of commitment in negotiations over “ex-post”

bargaining power (or share). We do not consider the case in which player 2 chooses

his effort first, after which player 1 chooses hers. In the literature on the principal-

agent problem, a principal refers to the individual who controls an asset or designs

and offers a contract, and an agent refers to the one who is “hired” by the principal

and takes appropriate actions. We are interested in situations where the principal

(player 1), who initially has all the bargaining power, forms a profit-sharing part-

nership with the agent (player 2). In this sense, it seems natural to study the effect

of the principal committing to her action first. Nonetheless, we can derive the equi-

librium of the SQ game in which player 2 chooses his effort first, which becomes a

mirror image of our results; but this analysis does not add more insights.14

14The detailed results are available from the authors upon request.
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Much literature on human resource management, personnel psychology, and or-

ganizational behavior has studied how shared leadership and ownership affect team

performance and team members’ behaviors. Salas et al. (2015) distinguish taskwork

from teamwork: Taskwork involves specific tasks to achieve team goals, whereas

teamwork focuses on the shared behaviors, attitudes, and cognitions that are nec-

essary for teams to accomplish the given tasks. According to this distinction, our

parameters α and κ can be related to taskwork ability and teamwork, respectively.

However, in our paper, teamwork refers to a partnership as a whole in which the

two players work together to generate some joint return. So we view both α and κ

as the elements of teamwork attributing to a successful partnership.

2.3 Negotiation Equilibrium with Standard Bargaining Solution

The solution concept we use is a negotiation equilibrium (Watson 2013), which is

a subgame-perfect Nash equilibrium in a game with joint decisions. Each player

maximizes her payoff when making effort choices at individual decision nodes,

consistent with sequential rationality; and the outcomes of joint decisions (at the

initial and final stages of our game) are consistent with the standard bargaining

solution for given bargaining weights. Before characterizing the equilibrium of our

game, we briefly review the concept of a standard bargaining solution.

Two players, i = 1, 2, are participating in bargaining. A bargaining problem

is expressed as a bargaining set V = (U , d). In a pair u = (u1, u2) ∈ U , u1

is player 1’s payoff and u2 is player 2’s payoff. The d is a pair (d1, d2) referred

to as a default outcome, which describes each player’s payoff with no agreement.

Let τ denote a monetary transfer from player 2 to player 1. A negative value of

τ indicates a transfer from player 1 to player 2. Let z represent negotiated items,

such as whether to form a partnership, profit-sharing rules, salaries, wage rates,
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compensation schemes, etc. Assuming the additive separability of utility for money,

player 1’s payoff is u1(z, τ) = v1(z)+τ and player 2’s payoff is u2(z, τ) = v2(z)−τ

for some functions v1 and v2. A joint value is defined as the sum of two players’

payoffs: u1(z, τ) + u2(z, τ) = v1(z) + v2(z).

In settings with transferable utility, an outcome is efficient if and only if it max-

imizes the players’ joint value. Let v∗ denote the maximized joint value, which can

be calculated by determining the value of z that maximizes v1(z) + v2(z). Because

each player can unilaterally incur the default outcome, no rational player would ac-

cept an agreement that gives her less than her default payoff. Hence, the players

negotiate over the surplus v∗ − d1 − d2. Bargaining weights summarize bargaining

powers in a negotiation. We denote player i’s bargaining weight by πi ≥ 0, where

π1 + π2 = 1, interpreted as the proportion of the surplus that player i obtains.

The standard bargaining solution is a mathematical representation of efficiency

and proportional division, in which each player is assumed to obtain her default

payoff plus her share of the surplus (Watson 2013). That is, the two players reach

an agreement, obtaining their payoffs of u∗
1 = d1 + π1(v

∗ − d1 − d2) and u∗
2 =

d2+π2(v
∗− d1− d2). The transfer τ achieves the required split of the surplus, thus

satisfying u∗
1 = v1(z

∗) + τ and u∗
2 = v2(z

∗) − τ . We use this concept of standard

bargaining solution to identify optimal behavior at joint decision nodes. In partic-

ular, in constructing the negotiation equilibrium of our game, the specifications of

(g, w) at the initial joint decision node and of t at the final joint decision node are

pinned down by the standard bargaining solution.

3 Symmetric Productivity Benchmark

In this section, we consider the benchmark case of symmetric productivity with

α = 1 in both the SM and SQ games. We characterize equilibrium using backward
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induction and the standard bargaining solution. We then examine the effect of dif-

ferent degrees of complementarity κ ∈ [0, 1] on the optimal bargaining weight and

compare those effects between the two games.

3.1 Simultaneous Effort Choice

We first examine the SM game. Consider the joint decision node in the players’

final negotiation over t given (g, w, x, y). At this node, the joint value is u1 + u2 =

(f(x, y)−x2−t+w)+(−y2+t−w) and the default payoffs are d1 = −x2+w and

d2 = −y2 − w. Hence, the surplus of an agreement at the final node is computed

as u1 + u2 − d1 − d2 = f(x, y). According to the standard bargaining solution, the

players (with their bargaining weights π1 = g and π2 = 1−g) reach an agreement in

which they receive u∗
1 = (−x2+w)+gf(x, y) and u∗

2 = (−y2−w)+(1−g)f(x, y).

To achieve such a split, player 2’s payoff must satisfy u∗
2 = (−y2 − w) + t, so we

obtain t∗ = (1 − g)f(x, y). The superscript asterisks (∗), henceforth, refer to the

optimal solutions for the SM game.

Now consider the subgame where the players individually and simultaneously

choose their effort levels. Given g and w, players 1 and 2 each choose x and y,

respectively, to maximize their payoffs, expecting the continuation payoffs with

t∗ = (1− g)f(x, y):

max
x∈R+

− x2 + w + gf(x, y); and max
y∈R+

− y2 − w + (1− g)f(x, y). (2)

The first order conditions with respect to x and y, respectively, are gfx = 2x and

(1 − g)fy = 2y, where fx = 2(1 + κy) and fy = 2(1 + κx). Thus we obtain

the solutions for the optimal effort levels, denoted by x∗(g;κ) and y∗(g;κ), for any

given κ ∈ [0, 1], as follows:
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x∗(g;κ) =
g + κg(1− g)

1− κ2g(1− g)
and y∗(g;κ) =

(1− g) + κg(1− g)

1− κ2g(1− g)
. (3)

Lastly, consider the initial joint decision node where the two players jointly

choose g and w to maximize the surplus that they get under an agreement of those

values in equilibrium. At the initial node, the joint value is
(
− x∗(g;κ)2 + w +

gf(x∗(g;κ), y∗(g;κ))
)
+
(
− y∗(g;κ)2−w+(1− g)f(x∗(g;κ), y∗(g;κ))

)
, and the

default payoffs are zero for both players. Hence, the surplus of an agreement at the

initial node is computed as f(x∗(g;κ), y∗(g;κ)) − x∗(g;κ)2 − y∗(g;κ)2. Then the

optimal g, denoted by g∗(κ), solves the following:

g∗(κ) = argmax
g∈[0,1]

S∗(g) := 2
(
x∗(g)+y∗(g)+κx∗(g)y∗(g)

)
−x∗(g)2−y∗(g)2, (4)

where the parameter κ is suppressed on the right-hand side for simplicity. The

optimal w∗ can be found by setting each player’s equilibrium payoff equal to her

default payoff (which is zero when the initial negotiation fails) plus her share of the

maximized surplus given weights π1 = 1 and π2 = 0, according to the standard

bargaining solution.

The following lemma characterizes the equilibrium (g∗, w∗, x∗, y∗, t∗).

Lemma 1. In the SM game with α = 1, for any given κ ∈ [0, 1], the unique

negotiation equilibrium is characterized as follows:

g∗ =
1

2
, w∗(κ) =

3− κ

(2− κ)2
, x∗(κ) =

1

2− κ
, y∗(κ) =

1

2− κ
, t∗(κ) =

4− κ

(2− κ)2
.

Lemma 1 shows that in the SM game with symmetric productivity, the players

jointly agree on an equal allocation of bargaining power in equilibrium regardless of
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the degree of complementarity. This result is intuitive because the surplus function

is symmetric in the two players’ efforts, as shown in (4). Symmetry implies that

the surplus is maximized when the two players choose the same level of effort,

i.e., x∗(g;κ) = y∗(g;κ), which is induced only by the equal bargaining weight,

g∗ = 1/2, regardless of κ.

Lemma 1 also delivers intuitive comparative statics with respect to the degree

of complementarity κ. The optimal “price” w∗(κ) that player 2 pays for an equal

bargaining power, the optimal efforts (x∗(κ), y∗(κ)), and the optimal “dividend”

t∗(κ) are all increasing in κ. These are because the realized surplus is monotonically

increasing in κ.

3.2 Sequential Effort Choice

We now examine the SQ game. At the joint decision node in the players’ final

negotiation over t given (g, w, x, y), the standard bargaining solution implies that

the optimal transfer, denoted by t̂, must satisfy t̂ = (1 − g)f(x, y) as in the SM

game. The “hats” (̂·) distinguish the optimal solutions for the SQ game from the

SM counterparts. Players 1 and 2 respectively obtain −x2 + w + gf(x, y) and

−y2 − w + (1− g)f(x, y) under an agreement.

In the subgame where the players choose their effort levels sequentially, player

1 first chooses x given (g, w) to solve

max
x∈R+

(
− x2 + w + gf(x, y)

)
subject to (1− g)fy − 2y = 0,

where the constraint is player 2’s first order condition that defines his best response.

Recall that f(x, y) = 2(x+y+κxy) and fy = 2(1+κx). Then player 1’s maximiza-

tion problem reduces to: maxx∈R+ (−x2 + w) + 2g (x+ (1− g)(1 + κx)2). The

first order condition with respect to x yields −2x+2g(1+2κ(1− g)(1+κx)) = 0.
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Solving for x, we obtain the optimal effort by player 1, denoted by x̂(g;κ); then

plugging x = x̂(g;κ) into player 2’s first order condition, y = (1− g)(1 + κx), we

obtain the optimal effort by player 2, denoted by ŷ(g;κ), for any given κ ∈ [0, 1]:

x̂(g;κ) =
g + 2κg(1− g)

1− 2κ2g(1− g)
and ŷ(g;κ) =

(1− g) + κg(1− g)

1− 2κ2g(1− g)
. (5)

Lastly, consider the initial joint decision node where the two players jointly

choose g and w to maximize the surplus, which is computed in the same way as in

the SM game: Ŝ(g) ≡ 2
(
x̂(g) + ŷ(g) + κx̂(g)ŷ(g)

)
− x̂(g)2 − ŷ(g)2, where κ is

suppressed. The optimal g maximizes Ŝ(g), and the optimal ŵ is found according

to the standard bargaining solution.

The following lemma describes the unique negotiation equilibrium (ĝ, ŵ, x̂, ŷ, t̂)

in the SQ game. Unlike in the SM game, the explicit formulae that characterize the

equilibrium are cumbersome to state here, so we focus on the underlying intuition.

Lemma 2. In the SQ game with α = 1, for any given κ ∈ [0, 1],

(i) The equilibrium bargaining weight for player 1, denoted by ĝ(κ), is charac-

terized by the quartic equation (A.3) in Appendix A.

(ii) There is a unique real solution to (A.3) such that ĝ(κ) ≤ 1/2 for all κ ∈ [0, 1]

where the equality holds iff κ = 0.

(iii) The equilibrium efforts (x̂(κ), ŷ(κ)) are obtained by plugging in g = ĝ(κ) in

(5). The equilibrium transfers are characterized by ŵ(κ) = t̂(κ)− ŷ(κ)2 and

t̂(κ) = (1− ĝ(κ))f(x̂(κ), ŷ(κ)).

We elaborate on the equilibrium bargaining weight of the SQ game in compar-

ison to that of the SM game in the next subsection. Note that it can be shown that

the optimal efforts (x̂(κ), ŷ(κ)) and transfers (ŵ(κ), t̂(κ)) are all increasing in κ, as

in the SM game. An interesting observation is the comparison of the equilibrium
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effort choices between the SM game and the SQ game. Figure 2 illustrates player

1’s optimal effort choices with respect to κ ∈ [0, 1] in the two games.
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1.5
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Figure 2: Player 1’s efforts x∗ (SM) and x̂ (SQ)

The figure shows that x̂(κ) ≥ x∗(κ) for all κ ∈ [0, 1], and that the difference

between the two variables increases in κ. In providing the intuitions, we find it

useful to decompose the two channels through which κ affects the equilibrium x.

First, in both the SM and SQ games, κ directly increases the marginal benefit to

player 1 of raising x, which we refer to as a direct effect. Second, in the SQ game,

κ increases the marginal benefit to player 1 of raising x through y. This channel

is called a strategic effect. To see this formally, consider player 1’s payoff change

with respect to x in the SQ game:

du1

dx
= −2x+ g fx︸︷︷︸

direct

+g fy(dy/dx)︸ ︷︷ ︸
strategic

.

The fx = 2(1 + κy) in the second term increases in κ, capturing the direct effect

in both games. In the SQ game, player 1 has an additional incentive to raise x for a

17



higher marginal revenue through y because player 1 takes into account that player

2’s effort choice is determined by (1−g)fy−2y = 0, such strategic effect of which

is captured by fy(dy/dx) = 2(1 + κx) × (1−g)fyx
2−(1−g)fyy

= 2(1 + κx)(1 − g)κ where

fyx = 2κ and fyy = 0. If κ = 0, then fy
dy
dx

= 0, so the equilibrium of the SQ game

is equivalent to that of the SM game. If κ > 0, then fy
dy
dx

> 0 increases in κ given

g ̸= 1. Thus player 1 has a greater incentive to raise x in the SQ game than in the

SM game, which intensifies as κ increases. The dashed curve for the SM game in

Figure 2 only includes the direct effect, whereas the solid curve for the SQ game

captures both the direct and strategic effects.

3.3 Equilibrium Bargaining Weights

Comparing Lemma 1 and Lemma 2(ii), we establish two immediate observations:

(1) when there is no complementarity (κ = 0), ĝ(κ) = g∗ = 1/2; and (2) when

there is complementarity (κ > 0), ĝ(κ) < g∗ = 1/2. Figure 3 illustrates these

observations.
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Figure 3: The equilibrium bargaining weights g∗ (SM) and ĝ (SQ)
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The first observation regards the simplest case where the players have equal pro-

ductivity (α = 1) with no complementarity in efforts (κ = 0). In such a case, the

players agree on allocating equal bargaining power for the final negotiation regard-

less of whether they choose efforts simultaneously or sequentially; this is because

the players equally contribute to the total surplus. An implication is that the tim-

ing of effort choices does not matter for the optimal profit-sharing rule when there

is no complementarity in efforts. This conclusion remains valid when asymmetric

productivity (α ̸= 1) is introduced in the next section (see Remark 2 (i)).15

The second observation states that when the players have symmetric productiv-

ity, player 1 initially endowed with all the bargaining power allocates equal bargain-

ing power to player 2 regardless of the degree of complementarity in efforts when

they choose efforts simultaneously; however, when player 1 chooses effort first, she

allows more than half the power to player 2 in the presence of complementarity.

This result is intuitive. Given that player 1 has the same productivity in generat-

ing the surplus as player 2 does, player 1 who chooses first would be willing to give

more share to player 2 in order to induce him to choose sequentially “enough” effort

that further complements in maximizing the total surplus. However, we will show

later that this conclusion that ĝ(κ) < g∗ is reversed for some high enough values of

κ > 0 and α > 1 when allowing for asymmetric productivity (see Remark 2 (ii)).

For the remainder of this section, we explain the intuition behind the second

observation in detail by examining how the surplus changes with respect to the bar-

gaining weight. At the initial negotiation stage, the optimal g is chosen to maximize

the surplus, denoted by S(x(g), y(g)). The first order condition is

dS(x(g), y(g))

dg
= Sx

dx(g)

dg
+ Sy

dy(g)

dg
= 0,

15When α ̸= 1, the equilibrium bargaining weight in the SQ game is no longer equal to half and
varies depending on α given κ. If κ = 0, then ĝ and g∗ coincide, both of which depend on α.
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which implies that the optimal ĝ must be less than half if dS/dg < 0 evaluated

at g = 1/2 in the SQ game. Note that in the SM game, both players choose the

same level of effort, x∗ = y∗, thus Sx = Sy at the optimum; and dx/dg > 0 and

dy/dg < 0 exactly balance out at g = 1/2 regardless of κ. Recall that for the given

optimal g, both players exert more effort in the SQ game than in the SM game due

to the additional strategic effect when κ > 0. Further, player 1’s optimal effort x̂ is

higher than player 2’s optimal effort ŷ. This implies that Sx < Sy (evaluated at the

optimum); that is, the marginal contribution to the surplus from a small change in x

is smaller than that from a small change in y. Because dx/dg > 0 and dy/dg < 0,

negotiation over g must end up with a higher share for player 2 to induce more of

his effort y.

Let us consider a numerical example where κ = 1. In the SM game, we have

g∗ = 1/2, x∗ = y∗ = 1, and S∗ = 4. Suppose that at the initial negotiation in

the SQ game, the two players agreed on g̃ = 1/2, in which case the subsequent

effort choices would be x̂(g̃) = 2 and ŷ(g̃) = 1.5. The marginal contributions to

the surplus evaluated at these effort levels are Sx = 1 and Sy = 3; and dx̂/dg = 2

and dŷ/dg = −2 evaluated at g̃ = 1/2. Then we have dS
dg

∣∣∣
g=1/2

= (1)(2) +

(3)(−2) < 0, which implies that g̃ = 1/2 was not optimal and that optimality

calls for a downward adjustment in the bargaining weight. In fact, given the weight

g̃ = 1/2, player 2’s incentive to exert efforts is relatively weak after observing

player 1’s effort choice. So the players must agree on a lower-than-half g, under

which player 2 will choose a higher y than ŷ(g̃) = 1.5, lowering the absolute value

of dŷ/dg; and player 1 will choose a lower x than x̂(g̃) = 2, raising the value of

dx̂/dg. In the SQ game, the surplus is maximized at ĝ ≈ 0.463, in which case

we have x̂ ≈ 1.91, ŷ ≈ 1.56, and Ŝ ≈ 6.82. The marginal contributions to the

surplus evaluated at the optimum are Sx = 1.3 and Sy = 2.7; and dx̂/dg ≈ 2.85
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and dŷ/dg ≈ −1.38. Thus we have dS
dg

∣∣∣
g≈0.463

≈ (1.3)(2.85) + (2.7)(−1.38) ≈ 0.

Note that the marginal contributions to the surplus are Sx = Sy = 2 at the optimum

in the SM game. This implies that in the SQ game, compared to the SM game, the

impact of changing g on the surplus is more than twice as great through dy/dg than

through dx/dg.

Another observation in Figure 3 is that ĝ in the SQ game is not necessarily

decreasing in κ. Using the implicit function theorem on the first order condition for

the optimal g, we can derive dĝ(κ)/dκ of which the sign is not necessarily negative.

In the SQ game, ĝ and κ interplay through the two players’ effort choices and the

surplus at the optimum in a subtle way. The key force at work here is the strategic

effect that exists only in the SQ game, explained in the previous subsection.

We summarize our main findings of this section as follows:

Remark 1. Consider our benchmark model with α = 1 given κ ∈ [0, 1].

(i) With no complementarity in efforts (κ = 0), the SQ game is equivalent to the

SM game; in particular, g∗ = ĝ(0) = 1/2.

(ii) The equilibrium bargaining weight for player 1 (the principal) is lower in the

SQ game than in the SM game; that is, ĝ(κ) ≤ g∗ = 1/2 where the equality

holds iff κ = 0.

(iii) The equilibrium bargaining weight for player 1 in the SQ game is not mono-

tonically decreasing in κ.

Based on Remark 1, we offer two managerial implications for settings with

symmetric productivity. Parts (i) and (ii) together imply that commitment does not

matter when there is no complementarity in players’ actions.16 In other words,

the ability of the principal’s commitment to her action before the agent (player 2)

chooses his action becomes a more important managerial concern when the partners
16This conclusion is also valid for settings with asymmetric productivity (see Remark 2).
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expect complementarity in their actions. Further, part (iii) suggests that greater

complementarity does not necessarily mean that giving more shares to the agent

will benefit the principal. While assigning more bargaining power to the agent is

one way to boost his effort, the marginal contributions to the surplus change non-

monotonically with the (adjusted) level of efforts and the degree of complementarity

together. Thus allocating more shares to the agent is not always optimal when

complementarity is greater.17

4 Asymmetric Productivity and Complementarity

In this section, we consider the general case of our model with α > 0 and κ ∈ [0, 1].

We first solve for the equilibrium bargaining weight in both the SM and SQ games.

We then study the effects of complementarity and asymmetric productivity on the

optimal bargaining weight, and compare those effects between the two games.

4.1 Equilibrium Bargaining Weights

Recall that the revenue from partnership, or the return of effort choices, is repre-

sented by f(x, y) = 2(x + αy + κxy) where α > 0 and κ ∈ [0, 1]. The explicit

formula for a closed-form solution of equilibrium bargaining weight is quite cum-

bersome to state here due to the tedious algebra involved; instead, we provide some

general properties of the solutions.

Proposition 1. In the SM game with α > 0 and κ ∈ [0, 1],

(i) The equilibrium bargaining weight for player 1, denoted by g∗(α, κ), is char-

acterized by the quadratic equation (A.10) in Appendix A.

17When we introduce asymmetric productivity, the degree of complementary affects the optimal
bargaining weight differently depending on the size of α, which we will examine in the next section.
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(ii) There is a unique real solution g∗(α, κ) ∈ (0, 1) to (A.10) for all κ ∈ [0, 1]

and α > 0.

(iii) For all κ ∈ [0, 1], g∗(α, κ) ≤ 1/2 if α ≥ 1 (where the equality holds iff

α = 1) and g∗(α, κ) > 1/2 if α ∈ (0, 1).

There is no dynamic interplay between effort choices under the SM game. So,

the key factor determining the joint decision on the bargaining weight (or share) is

how the two players marginally contribute to the total surplus. When 0 < α < 1,

player 1’s marginal contribution is higher than player 2’s. Thus the share allocated

to player 1 should be greater than that to player 2. Conversely, when α > 1, player

2 needs to be incentivized for his effort through a more-than-half share.

Proposition 2. In the SQ game with α > 0 and κ ∈ [0, 1],

(i) The equilibrium bargaining weight for player 1, denoted by ĝ(α, κ), is char-

acterized by the quartic equation (A.13) in Appendix A.

(ii) There is a unique real solution ĝ(α, κ) ∈ (0, 1) to (A.13) for all κ ∈ [0, 1]

and α > 0.

(iii) For given α > 0 and κ ∈ [0, 1], ĝ(α, κ) ≤ 1/2 if and only if (a) α ≥ 1 or (b)

1/2 ≤ α < 1 and (1/2)(
√
8− 7α2 − α) ≤ κ ≤ 1, where ĝ(α, κ) = 1/2 if

and only if 1/2 ≤ α ≤ 1 and κ = (1/2)(
√
8− 7α2 − α).

Unlike in the SM game, whether player 2 gets more than half share in equi-

librium depends on both player 2’s relatively higher productivity and the degree

of complementarity. In particular, even when player 2 is relatively less productive

than player 1 (1/2 ≤ α < 1), player 2 can get his share greater than half for some

sufficiently high degree of complementarity. The threshold for κ increases as α

decreases to half.

23



4.2 Comparative Statics of the Equilibrium Bargaining Weights

We first characterize the comparative statics of the equilibrium bargaining weight

with respect to asymmetric productivity and the degree of complementarity in the

SM game.

Proposition 3. Consider the SM game with α > 0 and κ ∈ [0, 1].

(i) The equilibrium bargaining weight g∗(α, κ) strictly decreases in α for any

given κ ∈ [0, 1].

(ii) The equilibrium bargaining weight g∗(α, κ) strictly decreases in κ if α ∈

(0, 1), stays the same in κ if α = 1, and strictly increases in κ if α > 1.

Figure 4(a) illustrates Proposition 3. Part (i) is intuitive: Given the degree of

complementarity, the more productive player 2 is, the more bargaining weight he

receives in equilibrium. Part (ii) states that given player 2’s relatively higher (resp.

lower) productivity, the stronger the complementarity, the lower (resp. higher) bar-

gaining weight player 2 gets. This result may seem counter-intuitive because as the

efforts complement each other, the players may want to give a higher share to a rel-

atively more productive player. To understand why this is not the case, consider the

SM game where player 2 is more productive than player 1 (α > 1). The surplus of

an agreement at the initial negotiation is S = 2(x+αy+κxy)−x2−y2 for x and y

chosen optimally at the subsequent nodes. A higher degree of complementarity (κ

increases) then means that there is bigger room for (the less productive) player 1 to

contribute to the surplus by increasing her effort level through the joint contribution

term κxy. To motivate more efforts by player 1, the optimal g must be higher, i.e.,

the relatively less productive player 1 gets more shares. Because dx∗/dg > 0 and

dy∗/dg < 0, a higher g will decrease player 2’s efforts; but player 1’s marginal con-

tribution to the surplus by a small increase in x is big enough so that the increase in

the surplus by a higher x will offset the decrease in the surplus by a lower y.
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Figure 4: The equilibrium bargaining weights g∗ and ĝ with respect to α and κ

Let us explain the logic using numerical examples. Recall that the first or-

der condition at the initial negotiation stage is given by dS/dg = Sx(dx/dg) +

Sy(dy/dg) = 0. In the SM game with α = 2 and κ = 0, the equilibrium consists

of g∗0 = 0.2, x∗(g∗0) = 0.2, and y∗(g∗0) = 1.6. The first order condition evaluated at

the equilibrium is:

dS

dg

∣∣∣∣
g=g∗0

= (1.6)(1) + (0.8)(−2) = 0.

Now let us consider that the SM game with the same α = 2 but κ = 1. Suppose

that the players agreed on the bargaining weight g̃ = 0.2, given which the players

will choose x(g̃) ≈ 0.619 and y(g̃) ≈ 2.095. Then the change in the surplus with

respect to g evaluated at these effort levels is:

dS

dg

∣∣∣∣
g=g̃

≈ (4.952)(3.061) + (1.048)(−0.170) ≈ 14.982 > 0,

which implies that g̃ = 0.2 was not optimal and calls for an upward adjustment in

the bargaining weight. In fact, given α = 2 and κ = 1, the equilibrium consists
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of g∗1 ≈ 0.434, x∗(g∗1) ≈ 1.227, and y∗(g∗1) ≈ 1.826, in which case the first order

condition evaluated at the equilibrium is:

dS

dg

∣∣∣∣
g=g∗1

≈ (3.2)(1.89) + (2.8)(−2.16) ≈ 0.

Given κ = 1, the joint contribution terms are calculated as x(g̃)y(g̃) ≈ 1.297 and

x∗(g∗1)y
∗(g∗1) ≈ 2.24. The equilibrium g and subsequently the equilibrium efforts x

and y are chosen so that the joint contribution term κxy is maximized.18

The next proposition describes the comparative statics of the equilibrium bar-

gaining weight with respect to asymmetric productivity and the degree of comple-

mentarity in the SQ game. We state the proposition without analytical proof, but a

graphical illustration is given in Appendix A.

Proposition 4. Consider the SQ game with α > 0 and κ ∈ [0, 1].

(i) The equilibrium bargaining weight ĝ(α, κ) strictly decreases in α for any

given κ ∈ [0, 1].

(ii) The equilibrium bargaining weight ĝ(α, κ) strictly decreases in κ if α ∈

(0, α), is non-monotonic in κ if α ∈ [α, ᾱ), and strictly increases in κ if

α ≥ ᾱ, where 0.8 < α < 1 and 1 < ᾱ < 1.2.19

Figure 4(b) illustrates Proposition 4. The comparative statics in the SQ game

is algebraically more complex to prove but is qualitatively similar to that in the

SM game, as shown in the two panels of Figure 4. For part (i), the intuition is the

same as in Proposition 3(i): for any given κ, the share ĝ(α, κ) that player 1 receives

monotonically decreases as player 2 becomes relatively more productive (higher α).
18As an illustration, suppose that given α = 2 and κ = 1, the players (suboptimally) agreed on

g′ = 0.5. Then x(g′) ≈ 1.33, y(g′) ≈ 1.67 so that dS/dg ≈ (2.67)(1.33)+(3.33)(−2.67) ≈ −5.33
(evaluated at x(g′) and y(g′)), and the joint contribution term is x(g′)y(g′) ≈ 2.22 < 2.24 ≈
x∗(g∗1)y

∗(g∗1).
19Due to analytical complexity we cannot compute the exact values of the bounds, but they are

calculated using MATLAB to be approximately α ≈ 0.845 and ᾱ ≈ 1.117.
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For part (ii), the comparative statics pattern and the underlying intuition are

identical to those in the SM game, except for near α = 1. That is, when either player

1 or 2 is sufficiently more productive than the other, i.e., α < α < 1 or α > ᾱ > 1,

the stronger the complementarity, the lower bargaining weight a relatively more

productive player gets. But when the two players have similar productivity (α near

1), i.e., α ∈ [α, ᾱ), the comparative statics of ĝ with respect to κ is not monotonic.

The key channel driving this non-monotonicity is the strategic effect that is only

present in the SQ game: A higher κ increases the marginal benefit to player 1 of

raising x directly as well as indirectly through increasing y as well.20 Such effect

distorts, in a non-monotonic way, the counter-balancing effects of g on the surplus

S represented by the two terms Sx(dx/dg) and Sy(dy/dg) in dS/dg. We do not

expound further on the analytical details of the non-monotonic pattern of ĝ because

such pattern seems unnoticeable, as shown in Figure 4(b), the underlying effects of

which are subtle to delineate without adding commensurate economic insight.

4.3 Comparison between the SM and SQ Games

Despite the non-monotonicity in the effect of κ on ĝ near α = 1, the comparison

of the equilibrium bargaining weights in the SM and SQ games is straightforward.

Figure 5 graphs both g∗(α, κ) and ĝ(α, κ) with respect to κ ∈ [0, 1] and α ∈ [0, 3].21

We can see that when κ = 0, g∗(α, 0) = ĝ(α, 0) regardless of α > 0; and that

when κ > 0, there is some threshold value of α̂(κ) that satisfies ∂α̂(κ)/∂κ > 0 such

that if α ≥ α̂(κ) then ĝ(α, κ) ≥ g∗(α, κ) and if α < α̂(κ) then ĝ(α, κ) < g∗(α, κ).

20The strategic effect of κ on the equilibrium efforts is explained in Section 3.2. The non-
monotonicity of ĝ is illustrated in Figure 3 in Section 3.3 for the benchmark model with α = 1,
and in Figure 11 in Appendix A for the general model with α > 0.

21Because g∗ and ĝ are defined by quadratic and quartic equations, closed-form solutions are
complex to compare analytically. Figure 5 graphs the comparison for the range of α ∈ [0, 3] but the
pattern extends beyond α greater than 3, as implied by Propositions 3 and 4.
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Figure 5: The equilibrium bargaining weights g∗ (SM) and ĝ (SQ)

To see the comparison more clearly, Figure 6 graphs the equilibrium bargaining

weights in the SM and SQ games with respect to α ∈ [0, 3] for the three given

values of κ = 0, 0.5, and 1.
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Figure 6: The equilibrium bargaining weights g∗ (SM) and ĝ (SQ), κ = 0, 0.5, 1

We summarize this comparison and the main findings of this section as follows:

Remark 2. Consider our general model given α > 0 and κ ∈ [0, 1].

(i) With no complementarity in efforts (κ = 0), the SQ game is equivalent to the

SM game; in particular, g∗(α, 0) = ĝ(α, 0) for all α > 0.

(ii) The equilibrium bargaining weight for player 1 (the principal) is higher in

the SQ game than in the SM game, i.e., ĝ(α, κ) > g∗(α, κ), when player 2 is
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sufficiently more productive than player 1 given some degree of complemen-

tarity.

(iii) The equilibrium bargaining weight for player 1 increases in α given κ in both

the SM and SQ games. It increases (resp. decreases) in κ if α ≥ 1 (resp.

α < 1) in the SM game, and if α ≥ ᾱ (resp. α < α) in the SQ game (where

it is not monotonic in κ if α ∈ [α, ᾱ)).

Remark 2 (i) is a direct generalization of Remark 1 (i). Remark 2 (ii) implies that

Remark 1 (ii) does not generally extend to situations with asymmetric productivity.

When player 2 is relatively more productive, given some degree of complementar-

ity, player 2 gets less bargaining power in the SQ game than in the SM game; on

the other hand, when player 1 is relatively more productive, player 2 gets less bar-

gaining power in the SM game than in the SQ game. The intuition can be explained

using the benchmark (α = 1), in which case (given some degree of complemen-

tarity) player 1 choosing first must be willing to give more share (than in the SM

game) to player 2 to induce him to choose sequentially “enough” level of effort that

further complements in maximizing the total surplus. However, when player 2 is

much more productive, the effect that player 1 has on the surplus by exerting more

effort is greater in the SQ game than in the SM game, which outweighs the former

effect, thus weakening the intuition behind Remark 1 (ii). That is, when α > 1 in-

creases, both g∗ and ĝ decrease, but g∗ decreases faster, implying that when player

2 becomes sufficiently more productive than player 1, player 1 choosing first does

not need to forgo as much bargaining power to player 2 as in the SM game.22

Combining parts (i) and (ii), the managerial implication derived in the bench-

mark model that the principal’s ability to commit matters when the partnership ex-

22This result relates to the logic of first-mover advantage: When player 2 is relatively more
productive, player 1 being the first-mover does not have to give up as much power to player 2 as in
the SM game because the more productive player 2 would have contributed to the surplus anyways.
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hibits complementarity in actions continues to hold in our general model. That is,

when there is no complementarity in efforts, the timing of players’ effort choices

does not affect the optimal bargaining weight regardless of the varying productiv-

ity of each player; however, the timing of effort choices matters in the presence of

complementarity. Remark 2 (iii) describes the general comparative statics results

that extend Remark 1 (iii). Aside from the non-monotonic region, the monotonic

increase or decrease in κ depending on α indicates that greater complementarity

means that giving more shares to the relatively less productive partner maximizes

the total surplus.

5 Discussions

In this section, we offer two implications of our analysis for corporate governance

and management, and discuss some issues pertaining to ownership requirements

and default payoffs.

5.1 Surplus Maximization in Partnerships

The profit-sharing rule (defined by g in our model), which essentially reflects an

allocation of ownership and organizational structure in a corporate governance sys-

tem, governs how the revenue in the partnership is generated and distributed. In

equilibrium of our model, the agent pays w = t − y2 up front for his share 1 − g

of the revenue f(x, y), where g is optimally chosen to maximize the profit or sur-

plus, S = f(x, y) − (x2 + y2), in the partnership. After the players optimally

choose their efforts, the principal collects the generated revenue f(x, y) and pays

t = (1 − g)f(x, y) to the agent as a salary. So the principal’s equilibrium payoff

is u1 = f(x, y) − x2 − t + w = S > 0, and the agent’s equilibrium payoff is
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u2 = −y2 + t − w = 0. Thus our analysis shows that the principal essentially

extracts all the surplus from the partnership in equilibrium as she is endowed with

all of the bargaining power in the initial negotiation.

Because heterogeneity in productivity and the degree of complementary cru-

cially affect the profit-sharing rule g, it is useful to examine the effects of α and

κ on the surplus, and thus on the principal’s equilibrium payoff. Those effects are

salient and monotonic in both the SM and SQ games (see Figure 8). As shown

in Figure 5, the difference in the equilibrium bargaining weights between the two

games may not seem economically significant. However, the difference in the equi-

librium surpluses between the two games is noticeable, as illustrated in Figure 7.
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Figure 7: Difference in the equilibrium surpluses of the SQ and SM games (Ŝ−S∗)

An immediate observation is that the surplus in the SQ game, Ŝ, is always

higher than that in the SM game, S∗, given any values of α and κ. Also, the dif-

ference Ŝ − S∗ gets larger as either α or κ increases. In particular, the surplus

gains that the principal would get when she chooses effort first relative to when the

players choose simultaneously increase as κ increases in a more convex manner for
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a higher α. This confirms that greater complementarity leads to a higher efficacy

of commitment in yielding more surplus. The timing of effort choices relates to

a managerial incentive or organizational structure, and so the principal’s commit-

ment can be viewed as an institution (as part of a governance system) that affects

the profit-sharing rule and thus the surplus.23 Thus, as an implication for corpo-

rate governance, the principal can benefit more from the agent with high levels of

productivity and complementarity when the principal can commit to her effort first

than when not.

5.2 Substitution between Complementarity and Productivity

Continuing from the previous discussion, it is intuitive that the principal will obtain

more utility from partnering with a highly productive and complementary agent

than from the one who is not. We further examine the relationship between individ-

ual productivity and complementarity in shaping the principal’s equilibrium payoff.

To do so, we graph the combinations of α and κ values that give the same equilib-

rium payoff to the principal. Figure 8 shows the principal’s indifference curves (or

iso-utility loci) in (α, κ) space for the SM and SQ games.

We make two observations. First, the principal’s indifference curves are concave

to the origin in either the SM or the SQ game. This is because in equilibrium

the principal shows an increasing marginal rate of substitution between the agent’s

productivity and complementarity.24 Second, the marginal rate of substitution of

α for κ increases differently between the SM and SQ games. In particular, the

indifference curves for the SM game are steeper than those for the SQ game.

23This point is based on a broad definition of governance system, given by Zingales (2002), that
links the way surplus is distributed and the way it is generated.

24That is, the equilibrium surplus is increasing and convex in both α and κ, as implied by Figure
7. We can also verify that the principal’s indifference curves are never strictly convex to the origin
for other values of utilities in Figure 8. These results are available from the authors upon request.
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Figure 8: Principal’s indifference curves for the SM (dashed) and SQ (solid) games

Those observations deliver interesting implications for management and human

resources on the employee selection process and optimal hiring. Let us consider a

pool of job applicants for the role of agent.25 Those job applicants differ among

the two traits: individual marginal productivity (α) and complementarity to the

principal (κ). We assume that there is a distribution of traits in the labor market,

and the “budget” set that the principal faces is represented by all pairs of traits (α, κ)

that the applicants in the pool possess. Consider the following three potential agents

in the applicant pool, denoted by circles in Figure 9. Agents P and C have strength

in one trait but lack the other: Agent P is almost twice more productive than the

principal but does not complement the principal (α ≈ 1.94, κ = 0), whereas Agent

C strongly complements the principal but is almost half less productive than the

principal (α ≈ 0.55, κ = 1). Agent A is an all-rounder with a balanced pair of

traits, i.e., he is equally productive as the principal and complements her to some

degree (α = 1, κ ≈ 0.67).

25Our model does not study the principal’s problem of optimal search for a partner, i.e., endoge-
nously choosing an agent to partner with. So we only provide a simple illustration here.
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Figure 9: Principal’s indifference curves and three potential agents (C, A, P).
Notes: The two solid curves are the principal’s indifference curves for the SQ game. The
two dashed curves are the principal’s indifference curves for the SM game. The red dashed
line that connects C and P represents the budget line that the principal faces in both games.

As can be seen from Figure 9, the principal’s preference ordering over the three

potential agents is P ≻ A ≻ C in the SM game and P ∼ C ≻ A in the SQ game,

in terms of the equilibrium payoff that she would get from hiring each applicant as

the agent for partnership. A full analysis of this problem is beyond the scope of this

paper. Yet we can conclude that it is not always optimal for the principal to hire an

all-rounder agent (generalist) rather than an agent with biased traits (specialist).26

Our second observation on the comparison of the two games indicates that com-

plementarity is of greater value to the principal’s equilibrium payoff in the SQ game

than in the SM game. In other words, to give up a unit of the agent’s productivity

26This conclusion may still be valid even when the principal’s indifference curves are convex to
the origin, depending on how a budget set (pool of applicants) looks like and how generalists and
specialists are defined in terms of (α, κ). Here, we define a generalist as an agent who is a convex
combination of the two agents at the end points of a straight budget line (e.g., C and P). Under such
a definition, generalists are always better than specialists for a principal with a convex indifference
curve system, but vice versa for a principal with a concave one.
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and maintain the same level of utility, the principal requires a less degree of com-

plementarity in the SQ game than in the SM game. Another way to see this is to

notice that, in the example illustrated in Figure 9, the utility-maximizing points oc-

cur at P and C in the SQ game but only at P in the SM game, given the budget line

(red dashed line). That is, the principal is indifferent between Agents P and C in

the SQ game but she strictly prefers Agent P over Agent C in the SM game. This is

because the principal’s willingness to trade the agent’s productivity for complemen-

tarity is lower in the SM game than in the SQ game. An implication is that there

is more value to gaining complementarity and forgoing productivity of the agent

in the SQ game; because the principal has an additional channel through which a

higher complementarity can increase her payoff by committing to her effort first.

5.3 Constraint on Ownership

Many U.S. public firms have adopted the executive stock ownership requirements

(SORs), which require that a fixed number of shares or a specified value of a stock

(expressed as a multiple of salary) be held by an executive officer (Benson, Lian and

Wang 2016; Brisley, Cai and Nguyen 2021; Core and Larcker 2002). In our model,

the players can jointly choose any share g ∈ [0, 1] that maximizes the expected

surplus in the initial negotiation. The idea of SORs can be incorporated into our

model by imposing the constraint g ≥ g for some g > 0. This constraint may be

in place for reasons other than SORs. For example, a principal may face a threat

of losing ownership control if she has too low a share of her own company, or an

agent may have low liquidity necessary for making an initial transfer for his share.

As shown in Figures 5 and 6, the range of the equilibrium values of g over α is

smaller for a higher κ in both the SM and SQ games. In particular, the equilibrium g

ranges from 0.1 to 1 when κ = 0; from 0.29 to 0.85 when κ = 0.5; and from 0.4 to
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0.69 when κ = 1, over the domain from α = 3 to α = 0, respectively.27 This means

that the constraint g ≥ g, or SOR, is more likely to bind for firms with high levels of

α and/or low levels of κ. Suppose we measure “firm” performance or value in our

model by the surplus generated from a partnership. Then, a theoretical implication

is that CEOs (whose stockholdings were at the equilibrium level) adopting a binding

SOR would experience a deterioration in firm performance, broadly consistent with

the empirical findings of Brisley, Cai and Nguyen (2021).28 In this sense, a principal

partnering with a highly productive but weakly complementary agent is able to

extract more benefits and improve firm performance by lowering her ownership

share below the executive stock ownership guideline. That is, it is not necessarily

surplus-improving to adopt the SOR governance initiative, which is intended to

result in better managerial incentive alignment and improved performance.

5.4 Default Payoffs

The two players receive the default payoffs of (−x2 + w,−y2 − w) when they fail

to agree on sharing the realized return of their effort choices in the final negotiation.

By this time, they have already incurred their effort costs and made the transfer w.

This transfer w (which is tied to the selection of g) is automatically enforced at the

initial negotiation stage. In the concept of standard bargaining solution, the players

immediately transfer to split the surplus in proportion to their bargaining weights.

This is important for the equilibrium characterization as the players use monetary

transfers to provide incentives. The equilibrium transfers are characterized by t =

27More precisely, when κ = 0.5, g∗ ∈ [0.29819, 0.8477] and ĝ ∈ [0.31432, 0.81010]; and when
κ = 1, g∗ ∈ [0.40249, 0.68233] and ĝ ∈ [0.41418, 0.58252], for the domain of α from 3 to 0.

28Brisley, Cai and Nguyen (2021) find that firms adopting a binding SOR underperform their
non-binding SOR peers who are already in compliance with the SOR. In contrast, Benson, Lian and
Wang (2016) find that firms with a binding SOR at the time of adoption have larger improvement in
operating performance and better stock performance than firms with a non-binding SOR.
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(1 − g)f(x, y) and w = t − y2, which are indispensable for successful agreement

in negotiation and have intuitive interpretations. The final transfer t is like a salary

or dividend to the agent paid out as his share of the revenue, determined at the final

negotiation; at the initial negotiation, the agent buys his share 1 − g at the price of

w, which equals his salary minus effort costs. The initial transfer w is irreversible

whether or not the players fail to agree in the final negotiation.29 Thus, both in

theory and in reality, it is not plausible to consider the case in which the initial

transfer w is completely nullified under disagreement in the final stage.

We may yet consider the default payoffs to be (−x2+βw,−y2−βw) for some

β ∈ (0, 1), which incorporates the idea that the agent may retrieve a fraction of

the initial transfer. Such an alternative setup only complicates the analysis without

changing our results or adding commensurate insight. To illustrate, consider the

SM game. At the final node, by the standard bargaining solution, player 2’s payoff

must satisfy −y2 − βw + (1 − g)f(x, y) = −y2 − w + t, which gives t∗ = (1 −

g)f(x, y)+ (1−β)w. At the individual decision node, the players’ optimal choices

of x∗ and y∗ are not affected given the continuation payoffs with t∗. At the initial

node, by the standard bargaining solution, player 2 receives zero payoff which must

be equal to −(y∗)2 + t∗ − w, so the optimal w must satisfy w = t∗ − (y∗)2 =

(1− g)f(x, y)+ (1−β)w− (y∗)2, which yields w∗ = ((1− g)f(x, y)− y2)/β and

t∗ = ((1− g)f(x, y)− y2 + βy2)/β. As can be seen here, the transfers are used to

achieve the required split of the surplus.

29For example, when an agent buys some share of a company, he pays his share price up front; if
the final negotiation fails, then he will not be receiving his portion of the realized return but is still
holding the share he bought.
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6 Conclusion

A successful partnership depends on partners’ individual productivity, their comple-

mentarity to each other, as well as on how they make productive decisions. Those

factors shape how the two partners negotiate over partnership formation and com-

pensation schemes to share the profit from their partnership. We introduce a theo-

retical model that features those factors to study multi-stage negotiation process in

partnerships. Our analysis identifies the effects of complementarity, productivity,

and commitment on a profit-sharing rule. We offer a set of interesting implications

for contracting and governance structure.

We conclude by discussing several avenues for future research. Our model does

not capture the principal’s problem of selecting job applicants (agents) nor the set-

ting where multiple principals compete for agents. While we focus on the details of

contractual settings that influence negotiation outcomes in partnerships, the process

of selecting partners or competition may also affect ownership structure, manage-

rial incentive schemes, productive decisions, etc. An extension in this direction is

left for future work. Another avenue is to generalize our functional form of the

revenue from a partnership, f(x, y). While we focus on a multiplicative term κxy

to capture complementarity, examining whether our results continue to hold for a

more general function would be useful. Lastly, we may consider a model in which

the degree of complementarity is endogenized through the principal’s investment

in the agent’s human capital, and the investment cost is shared between the two

partners. In such a situation, a hold-up problem may arise depending on how much

complementarity is firm-specific.30 Our paper offers a theoretical framework that

can be extended to incorporate other related issues in teamwork and management.

30See Che and Sákovics (2004) and Che and Hausch (1999) for related literature.
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Nöldeke, Georg and Klaus M. Schmidt. 1998. “Sequential Investments and Options
to Own.” The RAND Journal of Economics 29(4):633–653.

Radner, Roy. 1985. “Repeated Principal-Agent Games with Discounting.” Econo-
metrica 53(5):1173–1198.

Radner, Roy. 1986. “Repeated Partnership Games with Imperfect Monitoring and
No Discounting.” The Review of Economic Studies 53(1):43–57.

40



Radner, Roy, Roger Myerson and Eric Maskin. 1986. “An Example of a Repeated
Partnership Game with Discounting and with Uniformly Inefficient Equilibria.”
The Review of Economic Studies 53(1):59–69.

Salas, Eduardo, Marissa L. Shuffler, Amanda L. Thayer, Wendy L. Bedwell and
Elizabeth H. Lazzara. 2015. “Understanding and Improving Teamwork in Or-
ganizations: A Scientifically Based Practical Guide.” Human Resource Manage-
ment 54(4):599–622.

Shleifer, Andrei and Robert W. Vishny. 1997. “A Survey of Corporate Governance.”
The Journal of Finance 52(2):737–783.

Watson, Joel. 2013. Strategy: An Introduction to Game Theory. 3rd ed. W. W.
Norton & Company.

Watson, Joel, David A. Miller and Trond E. Olsen. 2020. “Relational Contract-
ing, Negotiation, and External Enforcement.” The American Economic Review
110(7):2153–2197.

Zingales, Luigi. 2002. Corporate Governance. In The New Palgrave Dictionary of
Economics and the Law: Volume 1-3: A-Z, ed. Peter Newman. London: Palgrave
Macmillan pp. 497–503.

A Appendix: Proofs

Proof of Lemma 1. In any negotiation equilibrium, the equilibrium g must satisfy,

for a given κ, the first order condition:

dS∗(g;κ)

dg
= (2 + 2κy∗ − 2x∗)

∂x∗

∂g
+ (2 + 2κx∗ − 2y∗)

∂y∗

∂g
= 0, (A.1)

where (2+ 2κy∗− 2x∗) = 2(1+κ−g−2κg+κg2)
1−κ2g(1−g)

, (2+ 2κx∗− 2y∗) = 2(g+κg2)
1−κ2g(1−g)

, ∂x∗

∂g
=

1−κ2g2+κ−2κg
(1−κ2g(1−g))2

, and ∂y∗

∂g
= −1+κ2g2+κ−2κg+κ2−2κ2g

(1−κ2g(1−g))2
. Canceling out and rearranging the

terms, the first order condition (A.1) can be rewritten as

(1− 2g)
(
1 + 2κ+ κ2(1− g + g2)

)
= 0.
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Because 1 − g + g2 ≥ 3
4

and κ2 ≥ 0, the second term in parenthesis is always

strictly positive for every g ∈ [0, 1] and every κ ≥ 0; hence, the only real solution

g that satisfies the first order condition is g = 1/2 regardless of the value of κ.

Plugging in g = 1/2 in (3), we obtain x∗(κ) = 1/(2 − κ) and y∗(κ) = 1/(2 − κ).

Recall that t = (1− g)f(x, y) according to the standard bargaining solution, hence

t∗(κ) = x∗(κ) + y∗(κ) + κx∗(κ)y∗(κ) = (4 − κ)/(2 − κ)2. Also, in the standard

bargaining solution, at the initial joint decision node, player 2 must receive d2 +

π2S
∗(κ) where d2 and π2 are zeros and S∗(g;κ) is obtained from (4). By setting

his equilibrium payoff u∗
2 = −(y∗(κ))2 + t∗(κ) − w equal to zero, the immediate

transfer in equilibrium must satisfy w∗(κ) = t∗(κ)− (y∗(κ))2 = 3−κ
(2−κ)2

.

Proof of Lemma 2. In any negotiation equilibrium, g in equilibrium must satisfy,

for a given κ ∈ [0, 1], the first order condition:

dŜ(g;κ)

dg
= (2 + 2κŷ − 2x̂)

∂x̂

∂g
+ (2 + 2κx̂− 2ŷ)

∂ŷ

∂g
= 0, (A.2)

where (2+2κŷ− 2x̂) = 2(1+κ−g−3κg+2κg2−κ2g+κ2g2)
1−2κ2g(1−g)

, (2+2κx̂− 2ŷ) = 2(g+κg2)
1−2κ2g(1−g)

,
∂x̂
∂g

= 1−2κ2g2+2κ−4κg
(1−2κ2g(1−g))2

, and ∂ŷ
∂g

= −1+2κ2g2+κ−2κg+2κ2−4κ2g
(1−2κ2g(1−g))2

. Canceling out and rear-

ranging terms, the first order condition (A.2) is equivalent to

V ′(g;κ) ≡− 2κ3(κ+ 1)g4 + 2κ2(κ2 − κ− 3)g3 + 3κ(2κ2 + 4κ+ 1)g2

− (2κ3 + 9κ2 + 8κ+ 2)g + (2κ+ 1)(κ+ 1) = 0.
(A.3)

The function V ′(g;κ) is continuous on g ∈ [0, 1], V ′
(g = 0;κ) = (2κ+1)(κ+1) >

0 and V
′
(g = 1;κ) = −κ2 − 2κ − 1 < 0 for all κ ∈ [0, 1]. Thus the first order

condition (A.3) has a solution among the g ∈ (0, 1) as a real function of κ, denoted

by ĝ(κ).31 Differentiating V ′(g;κ) with respect to g and rearranging yield:

31A closed-form solution for ĝ(κ) can be derived by using the quartic formula (Auckly 2007).
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V
′′
(g;κ) =− 6κ3g2(1− κ)− 6κ(1− g)− 2κ(1− κ2g)− 8κ4g3

−
[
2 + 3κ2(6g2 − 8g + 3) + 2κ3(4g3 − 5g + 1)

]
.

(A.4)

The terms in the bracket can be rewritten as
[
2(1 − κ3) + 3κ2(6g2 − 8g + 3)(1 −

κ) + κ3(8g3 +18g2 − 34g+13)
]
, where (6g2 − 8g+3) = 6(g− 2/3)2 +1/3 > 0,

and (8g3 + 18g2 − 34g + 13) achieves a strictly positive local minimum in the

domain g ∈ [0, 1].32 Thus V ′′
(g;κ) < 0 for any given κ ∈ [0, 1] for all g ∈ [0, 1].

So V
′′ is strictly negative whenever (A.3) holds. Hence there is a unique solution

g = ĝ(κ) to the first order condition (A.3). Further note that V ′
(g = 1/2;κ) =

(1/8)κ(κ + 1)(κ − 2) ≤ 0 where the equality holds iff κ = 0 and V
′′ is strictly

negative for all g ∈ [0, 1] given κ ∈ [0, 1], implying that V ′ remains negative for

g > 1/2. Therefore the unique solution among g ∈ (0, 1) must lie in g ∈ (0, 1/2].

That is, Ŝ(g;κ) obtains its maximum value at a unique ĝ(κ) ≤ 1/2 given κ ∈ [0, 1],

where ĝ(κ) = 1/2 iff κ = 0. Plugging in g = ĝ(κ) in (5), we obtain x̂(κ) and ŷ(κ)

in equilibrium. Using the standard bargaining solution, the equilibrium transfers are

characterized by ŵ(κ) = t̂(κ)− (ŷ(κ))2 and t̂(κ) = (1− ĝ(κ))f(x̂(κ), ŷ(κ)).

Proof of Proposition 1. Parts (i) and (ii): At the final joint decision node, the equi-

librium transfer t is determined by the standard bargaining solution as in Section

3.1. In the subgame after the initial negotiation, the first order conditions to play-

ers’ problems of choosing their effort levels (see (2)), become 2g(1+κy) = 2x and

2(1− g)(α + κx) = 2y. Thus we obtain

x∗(g;α, κ) =
g + ακg(1− g)

1− κ2g(1− g)
and y∗(g;α, κ) =

α(1− g) + κg(1− g)

1− κ2g(1− g)
. (A.5)

32The local minimum is (1/36)(1629− 95(285)(1/2)) > 0 at g = ((95/3)(1/2) − 3)/4 ∈ (0, 1).
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At the initial joint decision node, the players jointly choose g to maximize the sur-

plus S∗(g;α, κ) = 2(x∗ + αy∗ + κx∗y∗) − (x∗)2 − (y∗)2, and w is determined by

the standard bargaining solution. So g in equilibrium must satisfy, for given α and

κ, the first order condition:

dS∗(g;α, κ)

dg
= (2 + 2κy∗ − 2x∗)

∂x∗

∂g
+ (2α + 2κx∗ − 2y∗)

∂y∗

∂g
= 0, (A.6)

where (2 + 2κy∗ − 2x∗) = 2(1+ακ−g−2ακg+ακg2)
1−κ2g(1−g)

, (2α + 2κx∗ − 2y∗) = 2(αg+κg2)
1−κ2g(1−g)

,
∂x∗

∂g
= 1−κ2g2+α(κ−2κg)

(1−κ2g(1−g))2
, and ∂y∗

∂g
= −α+ακ2g2+ακ2−2ακ2g+κ−2κg

(1−κ2g(1−g))2
. Canceling out and

rearranging terms, the first order condition (A.6) can be rewritten as

α2(κ2(g − 1)3 + g) + 2ακ(2g − 1) + κ2g3 + g − 1 = 0, (A.7)

or equivalently,

V ′(g;α, κ) ≡(1− (1 + α2)g) + 2ακ(1− 2g)

+ κ2(α2 − 3α2g + 3α2g2 − (α2 + 1)g3) = 0.
(A.8)

The function V ′(g;α, κ) is continuous on g ∈ [0, 1], and for all α > 0 and κ ∈ [0, 1],

V ′(g = 0;α, κ) = (ακ + 1)2 > 0 and V ′(g = 1;α, κ) = −κ2 − 2κα − α2 < 0.33

Thus the first order condition (A.8) has a solution among the g ∈ (0, 1), as a real

function of α and κ, denoted by g∗(α, κ). Differentiating V ′(g;α, κ) with respect

to g yields:

V
′′
(g;α, κ) ≡ −(1 + α2)− 4ακ− κ2(3α2 − 6α2g + 3(α2 + 1)g2)

= −(1 + α2)− 4ακ− 3κ2g2 − 3κ2α2(1− g)2.
(A.9)

33Note that V ′(g = 1;α, κ) = 0 iff α = κ = 0, implying that the optimum occurs at g = 1,
which is a trivial case where player 2 contributes nothing in the partnership.

44



We can easily see that V ′′ is strictly negative for all g ∈ [0, 1] given κ ∈ [0, 1]

and α > 0. So V
′′ is negative whenever V ′(g;α, κ) = 0. Hence there is a unique

real solution g = g∗(α, κ) ∈ (0, 1) that solves the first order condition (A.8); this

condition can be rearranged as:

−(α2 + 1)κ2g∗(α, κ)3 + 3α2κ2g∗(α, κ)2

− ((3ακ+ 1)(ακ+ 1) + α2)g∗(α, κ) + (ακ+ 1)2 = 0.
(A.10)

Part (iii): Evaluating V ′(g;α, κ) at g = 1/2, we obtain V ′(g = 1/2;α, κ) =

(1/8)(α + 1)(α − 1)(κ2 − 4). So V ′(g = 1/2;α, κ) ≤ 0 iff α ≥ 1 where the

equality holds iff α = 1. This implies that the unique solution g∗ to (A.10) must

lie in g ∈ [0, 1/2) if α > 1 given κ ∈ [0, 1], in g ∈ (1/2, 1] if α ∈ (0, 1) given

κ ∈ [0, 1], and occurs at g = 1/2 if α = 1 regardless of κ.

Proof of Proposition 2. Parts (i) and (ii): At the final joint decision node, the equi-

librium transfer t is determined by the standard bargaining solution as in Section

3.2. In the subgame after the initial negotiation, from the first order conditions to

players’ problems of choosing their effort levels sequentially, we obtain

x̂(g;α, κ) =
g + 2ακg(1− g)

1− 2κ2g(1− g)
and ŷ(g;α, κ) =

α(1− g) + κg(1− g)

1− 2κ2g(1− g)
. (A.11)

At the initial joint decision node, the players jointly choose g to maximize Ŝ(g;α, κ) =

2(x̂+αŷ+κx̂ŷ)− (x̂)2− (ŷ)2, and w is determined by the standard bargaining so-

lution. So g in equilibrium must satisfy, for given α and κ, the first order condition:

dŜ(g;α, κ)

dg
= (2 + 2κŷ − 2x̂)

∂x̂

∂g
+ (2α + 2κx̂− 2ŷ)

∂ŷ

∂g
= 0, (A.12)

where (2 + 2κŷ − 2x̂) = 2(1+ακ−g−3ακg+2ακg2−κ2g+κ2g2)
1−2κ2g(1−g)

, (2α + 2κx̂ − 2ŷ) =
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2(αg+κg2)
1−2κ2g(1−g)

, ∂x̂
∂g

= 1−2κ2g2+α(2κ−4κg)
(1−2κ2g(1−g))2

, and ∂ŷ
∂g

= −α+2ακ2g2+κ−2κg+2ακ2−4ακ2g
(1−2κ2g(1−g))2

. Can-

celing out and rearranging terms, the first order condition (A.12) is equivalent to

V ′(g;α, κ) ≡ −2κ3(κ+ α)g4 + 2κ2(κ2 − ακ− 3α2)g3

+ 3ακ(2κ2 + 4ακ+ 1)g2 − (2ακ3 + (8α2 + 1)κ2 + 8ακ+ α2 + 1)g

+ (2ακ+ 1)(ακ+ 1) = 0.

(A.13)

The function V ′(g;α, κ) is continuous on g ∈ [0, 1], and for all α > 0 and κ ∈ [0, 1],

V ′(g = 0;α, κ) = (2ακ+1)(ακ+1) > 0 and V ′(g = 1;α, κ) = −κ2−2ακ−α2 <

0. Thus the first order condition (A.13) has a solution among g ∈ (0, 1), as a real

function of α and κ, denoted by ĝ(α, κ). Differentiating V ′(g;α, κ) with respect to

g yields:

V
′′
(g;α, κ) = −8κ3(κ+ α)g3 + 6κ2(κ2 − ακ− 3α2)g2

+ 6ακ(2κ2 + 4ακ+ 1)g − (2ακ3 + (8α2 + 1)κ2 + 8ακ+ α2 + 1).
(A.14)

When (A.13) holds, taking into account that a solution is among g ∈ (0, 1), the

condition V
′′
(g;α, κ) < 0 can be equivalently written as

(−12g3 + 12g2 − 2)α2κ2 +
(
(−6g4 − 4g3 + 6g2)κ2 + 3(g2 − 1)

)
ακ

+ (−6κ4g4 + 4κ4g3 − 1) < 0.

The term (−12g3 + 12g2 − 2) < 0 in the domain g ∈ [0, 1], achieving its (local)

maximum of −2/9; the term (−6g4 − 4g3 + 6g2) < 1 in the domain g ∈ [0, 1],

achieving its (local) maximum of 5/8, so the term ((−6g4− 4g3+6g2)κ2+3(g2−

1)) < 0 for g ∈ [0, 1] given κ ∈ [0, 1]; and the term (−6κ4g4 + 4κ4g3) < 1 for

any given κ ∈ [0, 1] as it achieves its (global) maximum of κ4/8 ≤ 1/8, so the

term (−6κ4g4 + 4κ4g3 − 1) < 0 given κ ∈ [0, 1]. Therefore, the above inequality
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holds; that is, V ′′
(g;α, κ) < 0 for any given α > 0 and κ ∈ [0, 1] for all g ∈ [0, 1]

whenever (A.13) holds. Hence there is a unique solution g = ĝ(α, κ) to the first

order condition (A.13). Part (iii): Evaluating V ′(g;α, κ) at g = 1/2, we obtain

V ′(g = 1/2;α, κ) = (1/8)(κ2−2)(2(α2−1)+ακ+κ2). So if α ≥ 1, then V ′(g =

1/2;α, κ) ≤ 0 always where the equality holds iff α = 1 and κ = 0. But when

α < 1, (2(α2−1)+ακ+κ2) ≥ 0 if and only if α ≥ 1/2 and (1/2)(
√
8− 7α2−α) ≤

κ ≤ 1 where the equality holds iff 1/2 ≤ α < 1 and κ = (1/2)(
√
8− 7α2 − α).

These imply that the unique solution ĝ to (A.13) must lie in g ∈ [0, 1/2] iff α ≥ 1,

or 1/2 ≤ α < 1 and (1/2)(
√
8− 7α2 − α) ≤ κ ≤ 1; it occurs at ĝ(α, κ) = 1/2 iff

1/2 ≤ α ≤ 1 and κ = (1/2)(
√
8− 7α2 − α).

Proof of Proposition 3. Part (i): By the implicit function theorem, the implicit deriva-

tive dg∗(α,κ)
dα

can be obtained from (A.8) evaluated at the optimum g∗:

dg∗(α, κ)

dα
=

−2
(
ακ2(g∗ − 1)3 + αg∗ + κ(2g∗ − 1)

)
α2(3k2(g∗ − 1)2 + 1) + 4ακ+ 3κ2(g∗)2 + 1

. (A.15)

The denominator in (A.15) is strictly positive. From Proposition 1, g∗ > 1/2 when

α ∈ (0, 1) and g∗ ≤ 1/2 when α ≥ 1. Suppose that α ∈ (0, 1). Then in the

numerator of (A.15), ακ2(g∗ − 1)3 +αg∗ > 0 because κ ∈ [0, 1] and |g∗ − 1| < g∗,

and κ(2g∗ − 1) ≥ 0; so the numerator in (A.15) is strictly negative. Now suppose

that α ≥ 1. Taking into account that g∗ satisfies (A.8), the terms
(
ακ2(g∗ − 1)3 +

αg∗ + κ(2g∗ − 1)
)

in the numerator can be rewritten as

(1/α)
(
α2(κ2(g∗ − 1)3 + g∗) + ακ(2g∗ − 1)

)
= (1/α)

(
− ακ(2g∗ − 1) + (1/2− g∗) + (1/2− κ2(g∗)3)

)
> 0,

where the equality holds using (A.7). The positive sign follows because g∗ ≤ 1/2;

so the numerator in (A.15) is strictly negative. Thus dg∗(α,κ)
dα

< 0 for any given
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κ ∈ [0, 1]. Part (ii): By the implicit function theorem, the implicit derivative dg∗(α,κ)
dκ

can be obtained from (A.8) evaluated at the optimum g∗:

dg∗(α, κ)

dκ
=

−2(α2κ(g∗ − 1)3 + α(2g∗ − 1) + κ(g∗)3)

α2(3κ2(g∗ − 1)2 + 1) + 4ακ+ 3κ2(g∗)2 + 1
. (A.16)

The denominator in (A.16) is strictly positive. By Proposition 1, g∗ > 1/2 when

α ∈ (0, 1) and g∗ ≤ 1/2 when α ≥ 1. Suppose that α ∈ (0, 1). Then in the

numerator of (A.16), α2κ(g∗−1)3+κ(g∗)3 ≥ 0 because κ ∈ [0, 1] and |g∗−1| < g∗,

and α(2g∗−1) > 0; so the numerator in (A.16) is strictly negative when α ∈ (0, 1).

Now suppose that α ≥ 1. Then α2κ(g∗ − 1)3 + κ(g∗)3 ≤ 0 because α ≥ 1 and

g∗ ≤ 1/2, and α(2g∗ − 1) ≤ 0. So the numerator in (A.16) is strictly positive when

α > 1 and is zero when α = 1.

Graphical Illustration of Proposition 4. Part (i): Figure 10 graphs the cross-partial
∂2S
∂ĝ∂α

in the (α, κ)-space for α ∈ (0, 3] and κ ∈ [0, 1]. The pattern of graph extends

beyond α > 3. We observe that ∂2S
∂ĝ∂α

< 0 for any given κ ∈ [0, 1] and α > 0. By

Topkis’ Monotonicity Theorem, ĝ strictly decreases in α > 0.

Figure 10: The cross partial ∂2S
∂ĝ∂α

in the SQ game

Part (ii): In Figure 4(b), it is quite clear to see that ĝ monotonically decreases in κ

for some small values of α, say α < 0.8, and increases in κ for some larger values
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of α, say α > 1.2. But the pattern of ĝ with respect to κ for some intermediate

values of α is not clearly observed. Figure 11 shows graphically the ĝ with respect

to κ for different values of α.
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Figure 11: The ĝ with respect to κ for different α

While the monotonic decrease or increase of ĝ in κ is observed for α < 0.845 and

α > 1.117, the ĝ exhibits non-monotonic patterns for α near α = 1.
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