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1 Introduction

Since the first confirmed identification of coronavirus disease (COVID-19) in Wuhan, China, in December

2019, it has emerged as a global concern. On March 11, 2020, the World Health Organization (WHO)

declared it a global pandemic. By April 2022, there were over 500 million confirmed cases and 6 million

deaths worldwide. Given the seriousness of COVID-19, numerous countries swiftly implemented various

measures, including short-term actions, such as lockdowns, and long-term strategies, such as social distanc-

ing and vaccine development.

The economic impact of COVID-19 has been severe, leading governments worldwide to respond with

a significant increase in budget expenditures. As depicted in Table 1, governments have employed various

measures to combat COVID-19, resulting in substantial budget allocations. For instance, the U.S. and

Canadian economies witnessed a 2.14% and 1.99% increase in health expenditure between 2019 and 2020,

respectively. Consequently, both the U.S. and Canada were able to provide the public with vaccines starting

in December 2020, while the Japanese and South Korean governments followed suit in February 2021.

By December 2022, the vaccination rates per 100 people reached 247.84, 285.44, 250.19, and 197.37 for

Canada, Japan, South Korea, and the U.S., respectively. These vaccination efforts led to reductions in the

fatality rates to 1.1%, 0.2%, 0.1%, and 1.1% for the respective countries.

<Insert Table 1 around here>

Governmental health policies are formulated to anticipate the future course of a pandemic. The effec-

tiveness of government responses to a pandemic relies heavily on the accuracy of these forecasts. Accurate

pandemic forecasting allows for the early identification and mitigation of potential health risks, thereby pre-

venting the spread and outbreak of the disease. Additionally, forecasting plays a crucial role in enabling

healthcare systems and governments to efficiently plan and allocate resources, such as medical equipment,

personnel, and drugs. This ensures optimal control and mitigation of the disease’s impact. For instance,

if the forecasted number of confirmed COVID-19 cases is lower than the actual number, governments may

face the risk of increasing fatality rates owing to limited vaccine availability from suppliers. Therefore, ac-

curate forecasting is vital for governments to make informed decisions on the procurement and distribution

of vaccines and other essential resources.

Therefore, the primary objective of our study is to introduce an alternative methodology for forecasting

COVID-19 cases that complements the forecasts generated by the standard mean and median regression

methods. To achieve this goal, we leverage the benefits offered by modal regression compared to mean and

median regressions. Our study focuses on forecasting the cumulative confirmed COVID-19 cases for the
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four countries mentioned above using the modal regression approach. By utilizing this methodology, we

aim to enhance the accuracy and reliability of COVID-19 forecasts, providing a valuable addition to the

existing forecasting methods based on mean and median regressions.

A considerable body of literature has been dedicated to empirically analyzing the COVID-19 trend by

applying various classical forecasting methods. Studies such as Boccaletti, Ditto, Mindlin, and Atangana

(2020); Almeshal, Almazrouee, Alenizi, and Alhajeri (2020); Vespignani, Tian, Dye, Lloyd-Smith, Eggo,

Shrestha, Scarpino, Gutierrez, Kraemer, Wu et al. (2020); Chan, Chu, Zhang, and Nadarajah (2021); Gning,

Ndour, and Tchuenche (2022) focus on estimating the strain on medical services, understanding epidemi-

ological patterns, and providing policymakers with comprehensive information to formulate effective poli-

cies. Furthermore, Musulin, Baressi Šegota, Štifanić, Lorencin, And̄elić, Šušteršič, Blagojević, Filipović,

Ćabov, and Markova-Car (2021) review the application of standard regression methods in various AI-based

COVID-19 applications. However, conditional mean- or median-based forecasts can be significantly in-

fluenced by outliers or heavy-tailed noise in the data (see Chen, Genovese, Tibshirani, and Wasserman,

2016; Zhou and Huang, 2016; Xiang and Yao, 2022, for example). These limitations highlight the need for

alternative forecasting approaches to mitigate the impact of such data irregularities.

Modal regression is a valuable alternative to standard regression methods for forecasting random pro-

cesses that contain outliers and/or exhibit heavy-tailed noise distributions. The literature on modal regression

has demonstrated its advantages over other forecasting techniques. Sasaki, Sakai, and Kanamori (2020) rec-

ognize that estimating the conditional mode is more robust than estimating the conditional mean or median,

particularly when dealing with wide-ranging noise. Xiang and Yao (2022) provide an intuitive location es-

timator for skewed data, highlighting the superiority of modal regression in such cases. Furthermore, Yao

and Li (2014) introduce modal linear regression, exploring its application to high-dimensional data and an-

alyzing its asymptotic properties without assuming a symmetric error density function. Yu, Zhu, Shi, and

Ai (2020) propose a robust estimation procedure for partial functional linear regression using modal regres-

sion, specifically designed to handle outliers and heavy-tailed error distributions. Xiang and Yao (2022) also

propose a novel nonparametric statistical learning tool based on modal regression, serving as a complemen-

tary approach to standard mean and median regressions. Overall, the literature highlights the advantages

of modal regression in addressing the challenges posed by outliers, heavy-tailed noise, and skewed data,

thereby providing a robust and flexible forecasting methodology.

Despite the recent advancements in modal regression, its application to COVID-19 data remains lim-

ited. The COVID-19 pandemic has exhibited exponential growth, a wide range of government responses,

and the emergence of unexpected virus variants. These factors introduce unexpected noise and outliers,
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making COVID-19 data an excellent opportunity to explore the capabilities of modal regression. Although

Ullah, Wang, and Yao (2022) have conducted preliminary investigations by applying modal regression to

examine the interrelationship between COVID-19 cases and deaths in the U.S., there is still scope for further

exploration using modal regression. In this study, we utilize modal regression to forecast COVID-19 data

using specific time-series models. We then compare the results with those obtained using mean and median

regressions, as highlighted in previous studies (e.g., Musulin et al., 2021).

This study contributes to the existing literature in two significant ways. First, we introduce the coverage

quantile function (CQF) as a metric to evaluate the performance of modal regression. While the root-mean-

squared error and mean absolute error are commonly used objectives for optimizing mean and median

regressions, respectively, we utilize CQF as the objective for the modal regression. This approach provides

a clear understanding of the role and effectiveness of modal regression in forecasting. Second, we specify

an autoregressive model to capture the serial correlation in the COVID-19 data for the four countries listed

in Table 1. We then apply modal regression to generate forecasts and compare them with the forecasts

obtained using mean and median regressions. Our analysis reveals that the modal regression outperforms

the mean and median regressions in forecasting outliers. This finding underscores the superior performance

of modal regression in handling the unique characteristics and challenges of COVID-19 data. Overall, this

study’s contributions lie in the introduction of CQF as a novel evaluation metric for modal regression and the

empirical demonstration of its superior forecasting capabilities compared to mean and median regressions,

particularly when dealing with outliers.

The methodology employed in this study involves a simulation approach. The implementation of the

modal regression method relies on estimating the conditional density function, which is highly sensitive to

factors such as the selection of bandwidth or the shape of the density function, as pointed out by Ullah et al.

(2022). Consequently, the valuable theoretical results regarding modal regression are often challenging to

validate using empirical data owing to the presence of irregular data patterns. To address this challenge, we

adopt an extensive simulation approach that allows us to examine the characteristics of modal regression

using finite samples. We conduct Monte Carlo simulations using both cross-sectional and time-series data

to evaluate the performance of mean, median, and modal regressions. Additionally, we compare the per-

formance of different bandwidths utilized in the modal regression estimation. Furthermore, we apply the

modal regression method to forecast the cumulative confirmed COVID-19 cases in the four countries men-

tioned earlier. Through this empirical application, we demonstrate that the modal regression-based forecast

achieves a superior CQF compared with other forecasting methods. By combining simulation studies and

empirical analysis, we assess the performance of modal regression under various scenarios, investigate the
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impact of different bandwidth choices, and highlight the advantages of modal regression in forecasting

COVID-19 cases.

The remainder of this paper is organized as follows. In Section 2, we present a comprehensive review

of the relevant literature related to the subject of this study, highlighting the motivation behind our research.

Section 3 focuses on formalizing the modal regression problem. We propose the CQF metric and provide

an overview of the existing modal regression methods. The simulation results are presented in Section

4, in which various simulations are conducted to evaluate the performance of mean, median, and modal

regressions. Section 5 discusses the empirical analysis applied to COVID-19 data. We apply the modal

regression method to forecast the cumulative confirmed COVID-19 cases for the four countries mentioned

earlier and compare the results with those of other forecasting approaches. Finally, in Section 6, we conclude

the study by summarizing the key findings and discussing the implications and potential future directions of

research in this field.

2 Literature Review and Motivation

Numerous studies have focused on analyzing and predicting the trends of COVID-19. This section provides

a brief overview of some of the methodologies employed in these studies.

One common approach is to develop empirical prediction models using machine learning methods. For

example, Car, Baressi Šegota, And̄elić, Lorencin, and Mrzljak (2020) train a multilayer perceptron (MLP)

artificial neural network to create a global model for forecasting the maximum number of patients across

various locations over time. Similarly, Mollalo, Rivera, and Vahedi (2020) utilize MLP to forecast the

cumulative COVID-19 incidence rates, specifically in the U.S. Chakraborty and Ghosh (2020) propose a

hybrid approach that combines integrated autoregressive moving average models with wavelet-based fore-

casting models to predict the number of daily confirmed cases in the short term. Other prediction models for

confirmed cases include the gradient boosting regression model, the generalized waring regression model,

and various other machine learning approaches (see also Gumaei, Al-Rakhami, Al Rahhal, Albogamy,

Al Maghayreh, and AlSalman, 2021; Gning et al., 2022, for more examples using machine learning meth-

ods). These studies highlight the versatility of machine learning methods in capturing the complex dynamics

of COVID-19 data and providing accurate predictions. By leveraging various machine learning algorithms,

researchers have made significant strides in understanding and forecasting the spread of the virus.

In addition to machine learning methods, evolutionary computing algorithms have been employed to

develop epidemiological models that capture biological evolution through processes such as reproduction,
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mutation, recombination, and selection. For instance, Salgotra, Gandomi, and Gandomi (2020a) utilize gene

expression programming (GEP) based on evolutionary data analysis to specify a model for the potential im-

pact of COVID-19 on the 15 most affected countries. Similarly, in another study by Salgotra, Gandomi, and

Gandomi (2020b), a robust and reliable variant of the GEP method is developed to model the confirmed cases

and deaths caused by COVID-19 in India. Other examples include the work by Yousefpour, Jahanshahi, and

Bekiros (2020), who propose an effective and efficient multi-objective genetic algorithm for designing gov-

ernment strategies to address the disease. Zivkovic, Bacanin, Djordjevic, Antonijevic, Strumberger, Rashid

et al. (2021) employ a hybrid model combining an adaptive neuro-fuzzy inference system and an enhanced

genetic algorithm to predict the number of confirmed cases in China. These studies demonstrate the applica-

tion of evolutionary computing algorithms in modeling the dynamics of the COVID-19 pandemic, providing

valuable insights and predictions. By incorporating evolutionary principles, these approaches offer unique

perspectives and the potential to optimize strategies for mitigating the impact of the virus.

Several studies have focused on analyzing the COVID-19 trend from an economic perspective and as-

sessing its impact on the economy. They provide valuable insights into various economic implications of the

pandemic. For example, Almeshal et al. (2020) investigate the effectiveness of non-pharmaceutical interven-

tion measures in forecasting the size of the COVID-19 pandemic in Kuwait. They employ deterministic and

stochastic modeling approaches to estimate the scale of confirmed COVID-19 cases and identify the ending

phase of the pandemic. Their findings highlight the efficacy of non-pharmaceutical interventions, particu-

larly when infection rates and personal contact patterns change over time. Other studies examine specific

economic impacts of COVID-19. Ajide, Ibrahim, and Alimi (2020) analyze the impact of the lockdown

policy implementation on confirmed COVID-19 cases in Nigeria. Azimli (2020) investigate the impact of

COVID-19 on the degree and dependence structure of risky asset returns in the U.S. Béland, Brodeur, and

Wright (2023), Gupta, Montenovo, Nguyen, Lozano-Rojas, Schmutte, Simon, Weinberg, and Wing (2023),

and Rojas, Jiang, Montenovo, Simon, Weinberg, and Wing (2020) examine the effects of COVID-19 on the

labor market. Furthermore, Lu, Nie, and Qian (2021), Hamermesh (2020), Béland, Brodeur, Mikola, and

Wright (2022), and Tubadji, Boy, and Webber (2020) explore the impact of COVID-19 on mental health and

well-being, while Olmstead and Tertilt (2020) delves into a detailed examination of the impact of COVID-19

on gender inequality. Studies by Andrée (2020), He, Pan, and Tanaka (2020), Brodeur, Cook, and Wright

(2021), and Almond, Du, and Zhang (2020) investigate the environmental effects of COVID-19. These

studies provide valuable insights into the multifaceted economic consequences of COVID-19 and the cor-

responding government responses. They shed light on the impact on sectors such as labor markets, mental

health, gender equality, and the environment. For a comprehensive review of the economic consequences of
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COVID-19 and government responses, Brodeur et al. (2021) provide a recent survey.

Despite the extensive research conducted on COVID-19 and its analysis, there are variations in the

generated forecasts, and they may not be directly applicable to forecasting economic activities. Existing

literature often predicts the COVID-19 trend using mean and median regressions. For example, Rojas et al.

(2020) and Hamermesh (2020) employ mean regression to forecast the impact of COVID-19, whereas Lu

et al. (2021) delve deeper into mean-based forecasts using a median regression. Additionally, Béland et al.

(2022), Gupta et al. (2023), Tubadji et al. (2020), and He et al. (2020) apply the difference-in-differences

approach to evaluate the COVID-19 policies. However, forecasting the peak of the pandemic could be

more relevant when it comes to forecasting the economic environment affected by the pandemic. Economic

activities before and after the peak are likely to differ significantly, making it important to accurately forecast

the peak. Mean and median regressions may not be suitable for this purpose because they assume the central

tendency of the conditional distribution through mean and median estimations, respectively. Moreover, the

mean regression is most efficient when the conditional distribution is Gaussian or sub-Gaussian, whereas the

median regression becomes a robust estimator when the distribution is light-tailed. Unless the distribution

of confirmed cases is unimodal and symmetric, the mean and median regressions struggle to capture the

most likely value of the conditional distributionâĂŤa challenging characteristic often observed in real-world

data. Real-world data are more likely to exhibit multimodal, skewed, or fat-tailed distributions. Studies by

Krief (2017) and Ullah, Wang, and Yao (2021) demonstrate that mean and median regressions lose their

robustness and/or efficiency when time-series datasets contain multiple outliers and/or skewed distributions.

This aspect serves as the motivation to forecast the peak by estimating the mode of the conditional dis-

tribution. To achieve this, we use modal regression, which is specifically designed to estimate the mode of

a conditional distribution. In addition to estimating the same quantities as in the mean and median regres-

sions, under the assumption of a unimodal and symmetric conditional distribution, modal regression offers

several additional properties. First, modal regression is more robust to outliers than the mean and median

estimators because it utilizes the mode as a representation of the central tendency of the conditional distribu-

tion. Second, modal regression yields narrower forecasting intervals than other estimations. This is because

the interval around the conditional mode contains more observations than that around the conditional mean

and/or median for the same interval size. Finally, for data drawn from a multimodal conditional distribution,

modal regression captures a central tendency that is different from the mean and/or median. This enables

the exploration of different aspects of the conditional distribution. In this study, we apply modal regression

to forecast confirmed COVID-19 cases in Canada, Japan, South Korea, and the U.S. Subsequently, we com-

pare these forecasts with those obtained through mean and median regressions to assess the performance
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and advantages of the modal regression approach.

3 Method of Modal Regression

In this section, we discuss the methodology of modal regression and the models used for forecasting. Addi-

tionally, we provide a comprehensive explanation of the criteria used to evaluate the forecasts generated by

the modal regression.

3.1 Modal Regression

First, we discuss the limitations of the mean regression for forecasting and compare its characteristics with

those of the modal regression. To begin, let X ⊂ Rd and Y ⊂ R represent the spaces of regressors and the

dependent variable, respectively. We consider a dataset S = (xt, Yt) ∈ X × Y : t = 1, 2, . . . , n consisting

of independent and identically distributed random samples.1 Given this setup, we define the conditional

mode function f(x) as the mode of the conditional probability density function pY |X(·), which represents

the density of Y ∈ Y conditioned on X ∈ X . Mathematically, we have

f(x) := mode(Y |X = x) := argmax
y

pY |X(y|X = x).

Additionally, we introduce the variable U , defined as the difference between Y and f(X), that is, U :=

Y − f(X). Under the assumption that pU |X(·|X = x) is continuous and bounded for any X = x ∈ X , the

conditional mode of U given X = x is denoted as mode(U |X = x), which satisfies argmaxy pU |X(y|X =

x) = 0. We assume that the conditional density function pY |X(·|X = x) has a unique maximum with a

probability of 1, ensuring that f(x) is well-defined for any x ∈ X . This assumption guarantees the existence

and uniqueness of the global mode of f(·).2 Furthermore, maximizing the conditional density pY |X(·|X =

x) is equivalent to maximizing the joint density pX,Y (X = x, Y = ·) because p(y|x) = p(x, y)/p(x) for

a fixed x ∈ X . Therefore, the conditional mode can also be expressed as argmaxy p(y, x), indicating that

the estimation of the conditional mode is related to the estimation of the density function of the random

variables.

We explore this aspect by representing the conditional mode using a parametric model. Specifically,

1It is important to note that COVID-19 data are non-stationary and typically exhibit serial correlation in the error terms, which
violates the assumption of independence and identical distribution. We will address this issue later by specifying a model for serial
correlation.

2This type of conditional mode function is known as the unimodal regression function (e.g., Chen, 2018), while Chen et al.
(2016) relaxes the uniqueness condition in a nonparametric model regression context. In this study, we focus on the unimodal case.
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we let M := {m(X, θ) : θ ∈ Θ} be a parametric model for the conditional mode such that for a unique

θ∗ ∈ Θ, mode(Y |X) = m(X, θ∗), where Θ is a compact parameter space in Rp, and for each θ ∈ Θ,

m(·, θ) is a measurable function. Given this parametric model assumption, we estimate θ∗ by maximizing

the kernel-based objective function:

Qn,h(·) :=
1

n

n∑
t=1

ϕh (Yt −m(Xt, ·)) ,

where for each u ∈ R, ϕh(u) = h−1ϕ(u/h) such that ϕ(·) is a kernel density function symmetric around

zero and
∫
ϕ(u)du = 1, and h is the bandwidth. The commonly used kernel functions include Gaussian,

Epanechnikov, uniform, and triangular functions. For the remainder of this paper, we assume that ϕ(·) is

the standard normal density function for simplicity. By maximizing the objective function Qn,h(·), we can

estimate the value of θ∗ corresponding to the conditional mode. This approach allows us to represent the

conditional mode using a parametric model and estimate the associated parameters.

The maximization of Qn,h(·) requires a numerical optimization procedure because its maximum has no

closed-form expression. Various numerical optimization algorithms can be employed to maximize Qn,h(·)

such as the Modal Expectation and Maximization (MEM), Newton-type, and mean-shift algorithms (see Yao

and Li, 2014; Khardani and Yao, 2017; Chen et al., 2016, respectively). Among these optimization meth-

ods, the MEM algorithm has exhibited robust performance, as demonstrated in the simulations outlined in

Section 4. Therefore, for our empirical applications, we utilize the MEM algorithm as the chosen numerical

optimization procedure to maximize Qn,h(·) and estimate the parameters associated with the conditional

mode.

The MEM algorithm proposed by Li, Ray, and Lindsay (2007) extends the EM algorithm (Dempster,

Laird, and Rubin, 1977) to the modal regression context. While the EM algorithm assumes the presence

of latent variables in the likelihood function, the MEM algorithm considers their presence in the density

function and estimates the unknown parameters using the E- and M-steps. Specifically, the E-step involves

computing the weight of each observation. Given an initial parameter θ(0), for each observation (Yt, X
′
t)
′,

we calculate

π(t|θ(0)) := ϕh(Yt −m(Xt; θ
(0)))∑n

i=1 ϕh(Yt −m(Xt; θ(0)))
,

where ϕh(·) denotes the kernel density function. Next, the M-step maximizes the objective function:

θ(1) := argmax
θ∈Θ

n∑
t=1

{
π(t|θ(0)) log ϕh (Yt −m(Xt; θ))

}
.
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Using the updated parameter θ(1), we compute π(t|θ(1)) for each t and repeat the maximization process,

replacing θ(0) in the objective function. We iterate the E- and M-steps until the maximizing parameters

converge. Denoting the converged parameter as θ̂n, it maximizes the objective function Qn,h(·) since

each iteration progressively maximizes Qn,h(·). In the Appendix, we prove that for any positive integer

k, Qn,h(θ
(k+1)) − Qn,h(θ

(k)) ≥ 0. Therefore, as k tends to infinity, the maximum value of Qn,h(·) is

reached. This proof remains valid even when m(Xt; ·) is nonlinear, thereby generalizing the proof in Yao

and Li (2014), which assumes a linear model of the conditional mode.

The MEM algorithm relies on estimating the objective function using the kernel density function esti-

mation, which is influenced by the choice of bandwidth h. However, as highlighted by Ullah et al. (2022)

and confirmed by our Monte Carlo simulations in Section 4, the convergence of θ̂n to the unknown true

parameter depends critically on the bandwidth selection. Among various bandwidth selection methods, the

bandwidth suggested by Sheather and Jones (1991), referred to as SJ, generally produces robust estimation

results along with other bandwidths such as those selected by Scott’s (1979) and Silverman’s (1986) rule of

thumb. The SJ’s bandwidth is given as follows: Suppose z1, z2, . . . , zn represents the sample points of a

random variable Z. Then,

SJ’s bandwidth: hSJn :=

( ∫
k2(u)du

nσ̂4
n

∫
[f̂ ′′

n (u)]
2
du

) 1
5

,

where σ̂n is the standard deviation estimated using the sample points, k(·) is a kernel function used to weigh

the sample points, and f̂ ′′
n(·) := 1

nh3
0

∑n
t=1 L

′′
(
(·)−zt
h0

)
estimates f ′′(·), the second derivative of the density

function f(·) of Z. Here, h0 is the bandwidth, and L(·) is the kernel function used to estimate f(·). SJ

suggests the use of a simple rule of thumb for h0. In addition to SJ’s bandwidth, two other commonly used

bandwidths are as follows:

Scott’s bandwidth: hSCn := 1.06σ̂nn
−1/5, and

Silverman’s bandwidth: hSVn := 0.9min[σ̂n, IQRn/1.34]n
−1/5,

where IQRn represents the interquartile range of the sample points, that is, the distance between the second

and third quartiles.

When applying the MEM algorithm, we combine it with least squares estimation to first estimate the

density function. Here is the procedure we follow when using Scott’s bandwidth as an example: first, we be-

gin by estimating the standard deviation, denoted as σ̂(1)
n , using the residuals obtained from the least squares
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estimation. Next, we apply the MEM algorithm to the density function estimated with Scott’s bandwidth

using σ̂
(1)
n , and obtain the first-step MEM estimator, denoted as θ(1). Using θ(1), we compute different

residuals to estimate the standard deviation, denoted as σ̂(2)
n , and estimate the density function using σ̂

(2)
n .

Subsequently, we maximize this new density function and obtain the second-step MEM estimator, denoted

as θ(2). We continue this iterative process, estimating σ̂
(k)
n and obtaining the k-th step MEM estimator

θ(k) until convergence is reached, and obtain θ̂n. We propose estimating σ̂
(1)
n using least-squares estima-

tion because it is not straightforward to estimate σ̂n directly using the MEM algorithm when the data are

nonstationary. In such cases, it is useful to first estimate the conditional mean using a unit-root process, as

demonstrated by the simulation in Section 4.2.

The main objective of modal regression differs from that of mean and median regressions. Although

the mean squared error (MSE) and mean absolute error (MAE) are typically used as target metrics for

optimizing mean and median regressions, respectively, these metrics do not align with the objective of the

conditional mode function (see, e.g., Buhai, 2005; Porter, 2015). Therefore, for modal regression, a different

target metric is required. Given that the conditional mode reflects the density in the vicinity of f(x) directly,

we can define a natural objective metric based on the number of observations around the estimator. In this

context, the CQF can serve as an appropriate objective metric for modal regression. Specifically, for a given

τ ∈ (0, 1), if κ is the quantity satisfying the equality

E[I(|Y − g(X)| ≤ κ)] = τ,

where I(·) is the indicator function and g(X) is a quantity defined by X , we can characterize the behavior

of the conditional mode using κ. Intuitively, as κ decreases, g(X) should approach the conditional mode

f(X), indicating that for a fixed τ , we can estimate κ to measure the extent to which the conditional density

of Y |X is concentrated around g(X). Therefore, we define the sample analog for the CQF as:

1

n

n∑
i=1

I(|Yt − ĝn(Xt)| ≤ κ) = τ,

where ĝn(Xt) is a generic estimator. This equation allows us to determine κ that satisfies the equality,

providing a measure of how well the estimator captures the concentration of the conditional density around

g(X). For the empirical applications discussed in Section 5, we set τ = 0.50, meaning that the interval

around g(Xt) with a distance of 2κ covers half the observations in the dataset. When ĝn(Xt) estimates the

conditional mode, we can expect the interval characterized by κ to be narrower than that those characterized
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by the conditional mean or median.3

3.2 Extension of the Modal Regression

In this section, we extend the application of modal regression to time-series data. This is necessary because

the data assumption made in the previous section does not account for the presence of a serial correlation

in the cumulative confirmed COVID-19 cases. To address this issue, we introduce time-series models that

explicitly capture the serial correlation structure.

In this section, we focus on specifying models for trend and serial correlation separately. The first-step

procedure involves modeling the trend component, whereas the second-step procedure focuses on modeling

the unit-root process, which captures the serial correlation. The first-step procedure is necessary because

COVID-19 data typically do not follow a linear deterministic time trend. Instead, the mode of each observa-

tion is represented as a function of the time index. The empirical analysis in Section 5.1 demonstrates that

the nonlinearity of the COVID-19 trend is more complex than a simple linear trend process. The second-

step procedure aims to transform the COVID-19 data into a stationary process with serial correlation. By

accounting for the serial correlation, we can capture the temporal dependencies present in the data and

ensure that modal regression analysis is applicable. By separately specifying models for trend and serial

correlation, we can effectively capture the characteristics of time-series data and enhance the accuracy of

the modal regression analysis of COVID-19 data.

In the first-step procedure, we focus on specifying the nonlinear trend component. We employ three

estimation methods. The first is the B-spline modal regression (BMR) proposed by Yu et al. (2020). To

implement the BMR, we utilize B-splines, which are a type of basis function. We define ξ as the knots of

the expected B-spline that partitions the unit interval [0, 1]. Each ti ∈ [0, 1] corresponds to a knot, and we

construct the linear spline space using (k−ℓ) B-spline basis functions of order ℓ. Here, the unit interval rep-

resents the time index space obtained by dividing the time by the sample size n; that is,{ 1
n ,

2
n , . . . ,

n−1
n , nn}.

The basis functions are defined as follows: for i = 0, 1, . . . , k − ℓ− 1,

Bi,0(τ) :=


1, if ti ≤ τ < ti+1

0, otherwise,

3It is also possible to interpret this association in the opposite manner: for a fixed κ, if g(X) = f(X), the interval around the
conditional mode can cover more samples than any other quantity g(X) ̸= f(X). This implies that τ increases as g(X) approaches
f(X).
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and

Bi,ℓ(τ) :=
x− ti

ti+ℓ − ti
Bi,i−ℓ(τ) +

ti+ℓ+1 − x

ti+ℓ+1 − ti+1
Bi+1,ℓ−1(τ),

where Bi,ℓ(·) represents the i-th basis function of order ℓ. For simplicity, we denote Bi,ℓ(·) as Bi(·), and the

B-spline basis function is denoted as B(·) = B0(·), B1(·), . . . , B(k−ℓ−1)(·). In this setup, we assume that

the conditional mode is a linear function of B(τ), that is, m(τ, θ) = θ′B(τ), and estimate the parameter

vector θ = (θ0, . . . , θk−ℓ−1∗)
′ using modal regression. Note that the choice of (ξ, ℓ) has a deterministic

effect on the shape of the spline function. The selection of ξ determines the positioning of control points,

whereas ℓ determines the number of coefficients in each piece of the piecewise polynomial representation.

Different types of B-splines can be defined by choosing (ξ, ℓ) in various ways. Examples of well-known

B-splines are as follows. First, for the nonperiodic B-spline, the first and last m knots are fixed at 0 and 1,

respectively, where 2m < k + 1. For instance, if we choose ξ = 0, 0, 0, 0.3, 0.6, 1, 1, 1, it corresponds to

the nonperiodic B-spline knots. Second, the uniform B-spline assumes equally spaced knots. For example,

if we select ξ = 0, 0.25, 0.5, 0.75, 1, it represents the uniform B-spline knots. Third, Bezier knot lets k = 1

such that the knots are set as ξ = 0, 1.

The choice of (ξ, ℓ) is typically determined empirically based on the data characteristics. For example,

if the data exhibit a curve resembling a quadratic function, the non-periodic B-spline can be employed by

setting the first and last ℓ+1 knots to 0 and 1, respectively, and placing ℓ knots in the middle. Yu et al. (2020)

demonstrate that the BMR is robust against outliers or heavy-tailed error distributions. Moreover, they show

that BMR performs no worse than least squares estimation when the errors are normally distributed.

Second, the local polynomial modal regression (LPMR) method, as examined by Xiang and Yao (2022),

can be employed as a second estimation method to estimate the modal function. The LPMR involves the

application of a p-th order Taylor expansion for the conditional mode around a reference value of τ ∈ [0, 1],

specifically t
n , to approximate f(τ). This approximation can be expressed as:

f (τ) ≈
p∑

i=0

f (i)
(
t
n

)
i!

(
τ − t

n

)i

=

p∑
i=0

θi∗

(
τ − t

n

)i

,

where θi∗ := f (i)
(
t
n

)
/i! and f (i)(·) represents the i-th order derivative of f(·). Similar to the B-spline

modal regression, the parameter vector θ∗ can be estimated by applying modal regression. In the LPMR

method, the optimal order p can be selected by minimizing the CQF with respect to the degree of the poly-

nomial. Xiang and Yao (2022) demonstrate through simulation that the LPMR method complements the

conventional nonparametric mean and median regressions, particularly in the presence of outliers. Further-
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more, they show that LPMR exhibits better prediction performance for skewed data than mean and median

regressions.

Finally, we apply the linear modal regression (MR) using the approach described in Yao and Li (2014).

This method assumes a linear model for f( t
n) as m( t

n , θ∗) = θ0 + θ1∗
t
n , where θ∗ := (θ0, θ1∗)

′ is estimated

through modal regression. Importantly, this linear model is not suitable for representing COVID-19 data.

However, we utilize it as a benchmark model to contrast its linearity against a process with a linear trend.

Additionally, Zhou and Huang (2019) propose the mean shift modal regression (MSMR) method for

nonparametric trend prediction. However, the forecasting error of MSMR is greater than that of the first

two methods (BMR and LPMR). As a result, we focus on the BMR, LPMR, and MR methods to predict the

trends in our analysis.

As the second step in specifying a correlation model, we apply an autoregressive (AR) model. The AR

model is defined as follows:

Yt = α∗ +
ℓ∑

i=1

βi∗Yt−i + Ut, (1)

where α∗ and βi∗ are the estimated parameters and Ut is the error term. We distinguish between the two

versions of the AR model based on the type of error term. First, we use a mean autoregressive (MEAR)

process that assumes that Ut follows a white noise process with zero mean and constant variance. This is the

conventional AR process. However, for modal regression, we assume that Ut is a white noise process with

a zero conditional mode, given Ft, where Ft is the sigma-algebra generated by Yt−1, Yt−2, and so on. We

refer to this version as the modal autoregressive (MAR) process. If the series Yt is not stationary, we apply

differencing to obtain a stationary process. In this case, we replace Yt and Yt−i in (1) with ∆Yt and ∆Yt−i,

respectively, and estimate the parameters θ∗ := (α∗, β1∗, . . . , βℓ∗)
′ using modal regression. If ∆Yt is still

nonstationary, we repeat the differencing process until we obtain a stationary process. The MAR model for

a differenced process of order d can be expressed as:

∆dYt = α∗ +

ℓ∑
i=1

βi∗∆
dYt−i + Ut.

The lag order ℓ is determined by applying the Bayesian information criterion (BIC), which is commonly

used to estimate the MEAR process. As Ut is determined by the conditional distribution of ∆dYt, given

∆dYt−i (i = 1, 2, . . .), the BIC can effectively assist in estimating the lag order of the MAR process.
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4 Evaluation of the Modal Regression by Simulation

In this section, we perform Monte Carlo simulations to examine the application of modal regression and

evaluate its effectiveness compared with other estimation methods. We consider two types of data-generating

processes (DGPs): cross-sectional and time-series data. Through these Monte Carlo simulations, we aim to

gain a comprehensive understanding of the capabilities and limitations of modal regression, particularly in

comparison with alternative estimation approaches, in both cross-sectional and time-series settings.

4.1 Simulation Using Cross-Sectional Data

We demonstrate the application of modal regression by comparing it with mean and median regressions.

First, we generate a set of identically and independently distributed (IID) observations {(Xt, Yt) : t =

1, . . . , n} according to the following formula: Yt = α∗ + β∗Xt + Ut. In this case, we set α∗ = 0, β∗ = 2,

Xt ∼iid U [0, 1], and Ut ∼iid 0.5N(−2, 32) + 0.5N(2, 12) to ensure that Xt and Ut are independent. We

refer to this data-generating process as DGP1. The left panel of Figure 1 displays the density function of

Ut, where we observe the expected value E(Ut) = 0, median median(Ut) = 1, and mode mode(Ut) = 2.

Consequently, the following relationships hold:

E (Yt | Xt) = α1∗ + β1∗Xt = 2Xt, median (Yt | Xt) = α2∗ + β2∗Xt = 1 + 2Xt, and

mode (Yt | Xt) = α3∗ + β3∗Xt = 2 + 2Xt.

This implies that the conditional mean, median, and mode functions are associated with different parameter

values. The right panel of Figure 2 illustrates the three functions represented by the blue, orange, and red

lines, respectively. Additionally, 200 observations randomly drawn from DGP1 are presented. We can

see that more observations align with the red line, indicating an asymmetric conditional distribution. The

forecast band encompasses a higher concentration of observations around the conditional mode function

than around the other functions. To estimate these three functions, we utilize the mean regression (MER),

linear quantile regression (LQR) with a quantile level of 0.5, and MR, respectively.

<Insert Figures 1 and 2 around here>

As highlighted by Ullah et al. (2022), the choice of bandwidth is crucial for the estimation results

when using the MR method. In our simulations, we explore different bandwidth values and observe that

the results are comparable when the SJ’s, Scott’s, and Silverman’s bandwidth selection methods are used.

Therefore, we discuss the simulation results by focusing on the three density function estimations. We use
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a two-step approach to estimate the density function. First, we employ a least squares estimation to obtain

conditional residuals. Subsequently, we optimize the conditional density function using the MEM algorithm,

as described in Section 3.1. This enables us to obtain reliable estimates of the density function.

We present the simulation results in the first panel of Table 2. We conduct 1,000 independent experi-

ments for different sample sizes (n = 100, 200, 300, 500, and 1,000) and report the MSEs of the estimated

coefficients. The MSE provides a measure of the average squared difference between the estimated and true

coefficients across the simulation experiments.

<Insert Table 2 around here>

The simulation results are summarized as follows:

(a) The MER, LQR, and MR methods consistently estimate the unknown parameters. As the sample size

n increases, the MSEs decrease for all three methods, indicating an improved estimation accuracy

with larger sample sizes.

(b) The MSEs obtained by the MR methods are generally similar among the different density function

estimation methods. However, a regular rank relationship is observed among the MR methods. In

particular, the MSEs obtained using SJ’s bandwidth tend to be smaller than those obtained using the

other methods. However, there is no consistent rank relationship between the MSEs obtained using

Scott’s and Silverman’s bandwidths. This suggests that SJ’s bandwidth tends to provide more accurate

estimation results in terms of MSE for the MR method, whereas the relative performance of Scott’s

and Silverman’s bandwidths may vary depending on the specific data and model conditions.

(c) We also examine the distribution of the estimated coefficients. The upper panels of Figure 3 show

the estimated probability density functions of α̂n and β̂n obtained by the MER method using SJ’s

bandwidth. It can be observed that the empirical distributions of the estimated coefficients are close

to bell-shaped distributions. This indicates that the estimated coefficients tend to be centered around

their true values and the variability around the mean is relatively symmetric. □

<Insert Figure 3 around here>

Using DGP1, we verify that the MEM algorithm consistently estimates the conditional mode, whereas the

MER and LQR estimations estimate the conditional mean and median, respectively.

We further explore the modal regression by considering a different DGP condition, DGP2. In DGP2,

we assume another distribution for the error term instead of the mixture normal distribution. Similar to

DGP1, we have Yt = α∗ + β∗Xt + Ut, where α∗ = 0, β∗ = 1, Xt ∼iid U [0, 1], and Ut ∼iid X 2
3 − 3
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with Xt ⊥ Ut, indicating that Ut follows a chi-squared distribution with three degrees of freedom shifted

by three. The right panel of Figure 1 shows the density function of Ut for DGP2. We specifically examine

DGP2 to investigate the performance of the modal regression when the error distribution has fat tails. The

density function of Ut exhibits an extreme left fat tail owing to the truncation at the border from the left, and

the right tail is fatter than that of a normal distribution by construction. Consequently, we anticipate that the

modal regression will perform relatively poorly compared to DGP1, as more observations are required to

estimate the density function accurately. Note that E(Ut) = 0, median(Ut) = −0.63, and mode(Ut) = −2.

Consequently, we have

E (Yt | Xt) = α4∗ + β4∗Xt = Xt, median (Yt | Xt) = α5∗ + β5∗Xt = −0.63 +Xt, and

mode (Yt | Xt) = α6∗ + β6∗Xt = −2 +Xt.

The right panel of Figure 2 displays the three different functions along with 200 observations randomly

drawn from DGP2. Similar to DGP1, more observations are distributed along the conditional mode function.

Using the observations generated from DGP2, we perform independent experiments following the same

procedure as that for DGP1, and the results are presented in the second panel of Table 2. The simulation

results are summarized as follows:

(a) As for DGP1, the MER, LQR, and MR methods consistently estimate the unknown parameters for

DGP2. Similar to DGP1, we observe that the MSEs decrease as the sample size n increases for

all three estimation methods. While the MSEs obtained using the MR methods are generally larger

than those obtained using the MER and LQR methods, we can confirm that the MR methods provide

consistent MR estimators. For brevity, we do not report the detailed simulation results. However,

notably, as the sample size increases to 2,000, the MR estimators become very close to the true

unknown parameters.

(b) When comparing the MSEs obtained by the MR methods for DGP2, we find that they are similar in

general. However, this is consistent with the observations for DGP1 that the MSE obtained by SJ’s

method is smaller than those obtained by Scott’s and Silverman’s methods. This suggests that SJ’s

bandwidth selection method tends to yield more accurate results in terms of MSE than the other two

methods.

(c) The lower panels of Figure 3 depict the empirical density functions of α̂n and β̂n obtained by the

MER method using SJ’s bandwidth for DGP2. While the empirical distributions are not perfectly

bell-shaped, they gradually converge to normal distributions. However, this convergence is slower
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than that in DGP1 owing to the presence of fat tails in the error distribution. The fat tails contribute

to deviations from perfect normality in the empirical density functions. □

From the additional simulation using DGP2, we observe that the modal regression effectively estimates the

conditional mode. Despite the presence of fat tails in the error distribution, estimating the density function

using SJ’s bandwidth remains more efficient than using the other methods. This result suggests that SJ’s

bandwidth selection is robust and effective in capturing the characteristics of the conditional mode, even in

the presence of non-normal and fat-tailed error distributions.

In addition to the simulations presented in this study, other simulations were conducted by assuming

different error distributions and consistent results were obtained. For instance, when considering an asym-

metric beta distribution for Ut, the parameter estimators obtained through modal regression exhibited faster

convergence to the unknown parameters. This further supports the effectiveness and robustness of the modal

regression method under various error distribution scenarios.

4.2 Simulation Using Non-Stationary Data

We further extend our simulation by considering serially correlated time-series data. As an extreme case,

we examine the unit-root process given by

Yt = α∗ + β∗Yt−1 + Ut,

where α∗ = 0, β∗ = 1, and Ut ∼iid 0.3N(−2, 32) + 0.2N(2, 22) + 0.5N(1, 12). Note that E(Ut) = 0.3,

median(Ut) = 0.75, and mode(Ut) = 1. Consequently, the following equations are derived:

E (Yt | Yt−1) = α7∗ + β7∗Xt = 0.3 + Yt−1, median (Yt | Yt−1) = α8∗ + β8∗Xt = 0.75 + Yt−1, and

mode (Yt | Yt−1) = α9∗ + β9∗Xt = 1 + Yt−1.

We conduct simulations to examine the behavior of the estimators in terms of MSE. The experimental results

are presented in Table 3, obtained by performing 1,000 independent experiments. Similar to previous sim-

ulations, we estimate the bandwidth components used in the density function estimation by first estimating

the conditional mean. The simulation results are summarized as follows:

(a) For all the cases considered in our simulations, we observe a consistent decrease in MSE as the sample

size n increases. This indicates that the MER, LQR, and MR methods are consistent in estimating

the unknown parameters. Moreover, the decreasing trend of MSEs as n increases suggests that modal
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regression is an effective estimation method, even for the unit-root process.

(b) When comparing the MSEs obtained by the MR methods, we consistently observe that the MSE

obtained by SJ’s method is overall smaller than those obtained by the other two methods, as we have

previously observed in the cross-sectional data simulations. This suggests that SJ’s method performs

better in terms of MSE when estimating the density function in the modal regression framework,

regardless of the data-generating process.

(c) Figure 4 displays the estimated probability density functions using α̂n and β̂n obtained by the MAR

method using SJ’s bandwidth. The figure shows that the empirical density functions exhibit shapes

that are close to a normal distribution. However, a more thorough investigation is required to fully

understand the influence of the unit-root process on the asymptotic distribution. In particular, because

the mean and median regressions do not produce asymptotically normally distributed estimators, it

would be interesting to examine the behavior of the asymptotic distribution under the modal regression

framework. Although this study does not conduct a detailed analysis, the empirical density functions

obtained from the simulation results appear to resemble bell-shaped distributions as the sample size

increases. Investigating the asymptotic distribution in the presence of a unit-root process is a promis-

ing avenue for future research. This analysis would shed light on the behavior and properties of the

estimators obtained through the modal regression, providing a more comprehensive understanding of

their performance in the context of unit-root processes. □

<Insert Table 3 and Figure 4 around here>

5 Empirical Analysis

In this section, we analyze the trends in COVID-19 processes in Canada, Japan, South Korea, and the U.S.

using the modal regression approach. To conduct this analysis, we utilize the official data on COVID-19

provided by the Johns Hopkins University Center for Systems Science and Engineering (JHU-CSSE). This

data collection incorporates information from various sources, such as the WHO, national governments,

and local media reports, enabling comprehensive tracking of the disease. Starting from January 22, 2020,

JHU-CSSE has been updating and publishing daily data on the cumulative number of confirmed COVID-

19 cases, deaths, and recoveries for each country and territory. These datasets serve as the basis for our

analysis, allowing us to examine the patterns and dynamics of the COVID-19 pandemic in Canada, Japan,

South Korea, and the U.S. from the modal regression perspective.4

4The data are available at the following URL: https://github.com/CSSEGISandData/COVID-19
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5.1 Forecasting the Confirmed COVID-19 Cases by Trend Fitting

Using the data for cumulative confirmed COVID-19 cases from February 8, 2022, to April 8, 2022, we

apply various nonlinear trend estimation methods: BMR, LPMR, and MR, in addition to the MER and LQR

methods. Each country’s dataset consists of 60 observations, which we split into two parts. The first 50

observations are used as the training set to estimate the trends, whereas the remaining 10 observations serve

as the test set to evaluate the performance of each method. To assess the performance of each method,

we use three evaluation metrics: RMSE, MAE, and CQF. These metrics provide measures of accuracy and

reliability for comparing the estimated trends across different methods and countries.

In the empirical applications, we follow a three-step process. First, min-max normalization was applied

to standardize the data. The transformed data are denoted as Y ′
t and are calculated as:

Y ′
t :=

(
Yt − Y0
Y 0 − Y0

)
,

where Y 0 := maxt=1,2,...,n Yt and Y0 := mint=1,2,...,n Yt. This normalization converts a large number of

confirmed cases to a range between zero and one. Additionally, we adjust the time index t to be within

the unit interval by rescaling it to t
n . Consequently, Y ′

t is readjusted to Y ′
τ , where τ = 1

n ,
2
n , . . . , 1. This

adjustment allows us to fit the trend of Y ′
(·). In the second step, we assume that Y ′

(·) follows a linear trend

and estimate the intercept and linear coefficient using the MER, LQR, and MR methods. Subsequently,

we compute the RMSE, MAE, and CQF using both the training and test sets. Finally, we consider the

possibility of Y ′
(·) having a nonlinear trend and estimate the trend using the BMR and LPMR methods.

For the BMR method, we set the B-spline order ℓ to 3, following Yu et al. (2020), and select 11 knots,

denoted as ξ = {0, 0, 0, 0, 0.2, 0.4, 0.6, 1, 1, 1, 1}. These knots are selected based on the observation that

the empirical curves resemble quadratic functions. For the LPMR method, we determine the polynomial

degree by minimizing the CQF. We also compute the RMSE, MAE, and CQF using the training and test

sets, similar to the linear trend case.

<Insert Table 4 and Figure 5 around here>

We present the estimation and prediction results in Figure 4 and Table 4. Figure 4 shows the scatter plots

of all data points considered, along with the regression lines obtained from the different regression methods.

To convert the predicted values Y ′
(·) back to the original scale, we use the formula Ŷ(·) := Ŷ ′

(·)(Y
0−Y0)+Y0,

where Ŷ ′
(·) represents the series predicted by each regression method. Table 4 presents the RMSE, MAE,

and CQF for the four countries. Based on the results, we summarize the estimation and forecast results as

19



follows:

(a) The MER, LQR, and MR methods demonstrate superior performance in terms of RMSE, MAE, and

CQF, respectively. This finding aligns with the characteristics of these estimators and their relation-

ships with the respective objective functions.

(b) In the training set, the modal regression methods, particularly the LPMR and BMR methods, exhibit

superior performance compared with the mean and median regression methods for all four countries.

In the test set, the LPMR and BMR methods continue to outperform the other regression methods for

Japan and the U.S., whereas the MR method outperforms the other regression methods for Canada

and South Korea. This trend is illustrated in Figure 5. Moreover, the LPMR method consistently

outperforms the other modal regression methods. The optimal value of p is chosen by minimizing

the CQF. Additionally, Table 4 illustrates that the LPMR method achieves lower RMSE and MAE

values than the BMR method in most cases. In terms of CQF, both the LPMR and BMR methods

offer competitive performance.

(c) Although estimating a linear modal trend is straightforward, its performance, as measured by the

CQF, is consistently surpassed by the BMR and LPMR methods. This indicates that the COVID-19

confirmed cases in the four countries do not conform to a linear trend.

(d) For the test sets of South Korea and the U.S., the forecast lines generated by the MR method are closer

to the actual values compared with those produced by the MER and LQR methods. This indicates that

the MR method performs better in forecasting the highest and lowest values of confirmed cases in

South Korea and the U.S., respectively. This implies that if the South Korean government relies

solely on the mean and median regression perspectives to formulate health policies, there is a risk

that healthcare systems will be overwhelmed by the actual number of confirmed cases, surpassing

the forecasts based on mean and median regressions. Similarly, implementing health policies in the

U.S. without considering the conditional mode forecast may lead to the misallocation of financial and

human resources. □

By comparing the different regression methods, we find that modal regression outperforms mean and

median regressions in both the training and test sets for all four countries, especially in terms of the CQF.

This observation confirms that the modal regression methods, which emphasize the conditional mode, yield

narrower forecast intervals than traditional approaches that primarily focus on the characteristics of the con-

ditional mean and median to achieve better RMSE or MAE scores, respectively. The superior performance

of modal regression suggests that considering the conditional mode can lead to more accurate and precise

predictions in the context of COVID-19 trend analysis.
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5.2 Forecasting the Confirmed COVID-19 Cases by Modal Autoregression

Using the MAR method, we analyze the transformed COVID-19 cases Y ′
(·) from Canada, Japan, South

Korea, and the U.S. for forecasting purposes. Before applying the MAR method, we perform the augmented

Dickey-Fuller (ADF) test to examine the presence of a unit root in the series. If the unit-root hypothesis

cannot be rejected, we take the first difference of the series and repeat the ADF test. This procedure is

repeated until we obtain evidence rejecting the unit-root hypothesis. This iterative process allows us to

identify the appropriate order of differencing required for the time-series data. By ensuring stationarity in

the data, we can effectively apply the MAR method to forecast COVID-19 cases.

Table 5 presents the results of the ADF test conducted on the original series and the series that has

undergone three levels of differencing. The p-values obtained from the ADF test for the original series

are all greater than 0.01, indicating that we cannot reject the null hypothesis of a unit root for these series.

However, for the three-times differenced series, the p-values are all less than 0.01, providing evidence to

reject the unit-root hypothesis. Based on these results, we specify the MAR model for the three-times

differenced data and estimate the unknown parameters using the modal regression approach. The MAR

order is determined by minimizing the BIC, as described in Section 3.2. In this case, we find that a MAR

order of 6 is selected for all four countries.

<Insert Table 5 around here>

We assess the performance of the forecasts obtained from the MAR model estimation by comparing

them with the forecasts obtained from the MEAR and LQAR models. To evaluate the forecasts on the

training data, we compare the forecasts with the actual observations and compute the RMSE, MAE, and

CQF. We employ two approaches to evaluate the forecasts on the test data. First, we forecast the future values

sequentially, using the recent forecasts as inputs (non-teacher-forcing method). Second, we forecast the

future values by utilizing the recent realizations from the test data as inputs (teacher-forcing method). The

teacher-forcing method is expected to produce more accurate forecasts than the non-teacher-forcing method

because forecast errors tend to accumulate over the forecasting period. By employing these evaluation

methods, we can assess the precision and accuracy of the MAR model forecasts and compare them with

those of the MEAR and LQAR models.

We present the qualitative forecasting results obtained from the MAR model using the teacher-forcing

method. The four upper panels of Figure 6 show the results. The MAR coefficients are estimated using

modal regression with the bandwidth selected as SJ’s bandwidth. It is evident that the MEAR, LQAR, and

MAR models exhibit impressive forecasting performance in capturing the trend of the cumulative confirmed
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COVID-19 cases. Furthermore, the lower four panels of Figure 6 show the forecasting results obtained using

the non-teacher-forcing method. These results demonstrate a pattern similar to that of the forecasting results

shown in the upper panels.

<Insert Figure 6 around here>

We provide a visual comparison of the daily forecasts of the cumulative confirmed COVID-19 cases in

Figure 6. It is important to note that differencing the cumulative confirmed cases results in the forecast of

daily confirmed cases. To visualize the daily forecast, we present Figure 7, which displays the daily forecast

for the four countries. The results are summarized as follows:

(a) For both the teacher-forcing and non-teacher-forcing methods, we observe that the MAR method

accurately captures the trends and autocorrelation patterns in the daily confirmed cases. Specifically,

for the U.S., the series exhibits a declining trend with oscillation, whereas the series for Japan shows

an initial decline followed by a rebound. These patterns are accurately captured by the MAR model,

demonstrating its superior performance compared with the MEAR and LQAR models.

(b) For both the teacher-forcing and non-teacher-forcing methods, we observe that the MAR method

outperforms the MAR and MEAR models in forecasting outliers. In Figure 7, the MAR forecasts

show wider variations than the LQAR and MEAR forecasts. This indicates that the MAR forecasts

are better able to capture the cyclical peaks and bottoms of the daily confirmed cases. This trend is

particularly evident in Canada and Japan.

(c) The forecast error on the test set tends to be larger in the non-teacher-forcing method compared to

the teacher-forcing method. This is because the prediction errors in the non-teacher-forcing method

accumulate as the last-period forecast is used as a covariate for the next-period forecast. This can lead

to compounding errors and potentially larger forecasting errors over time. However, in the teacher-

forcing method, the use of actual realizations in the test data as inputs for forecasting helps mitigate

the accumulation of errors, resulting in generally more accurate forecasts.

(d) The forecast results obtained from the MAR, LQAR, and MEAR models show that governments

can be better prepared when forecasting daily confirmed cases using the MAR model compared to

the LQAR and MEAR models. The MAR model demonstrates better performance in capturing the

trends, autocorrelation patterns, and outliers in the daily confirmed cases. This implies that the MAR

model for forecasting can provide governments with more accurate and reliable information to make

informed decisions and take appropriate measures in response to the COVID-19 pandemic. □

<Insert Figure 7 around here>
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The qualitative prediction outcomes for daily confirmed cases using the MAR model estimated by modal

regression with Scott’s and Silverman’s bandwidths are shown in Figures 8 and 9. Only the forecasts ob-

tained by the teacher-forcing method are shown for brevity, and they exhibit similar performance to the

forecasts obtained using SJ’s bandwidth. However, there are significant differences in the quantitative eval-

uations. Table 6 reports the RMSEs between the forecasts and the actual values obtained using the teacher-

forcing method. It is observed that SJ’s method outperforms the other two methods, which is consistent with

the findings in Section 4.

<Insert Table 6 and Figures 8 and 9 around here>

The quantitative results for the three methods are presented in Tables 6 and 7. Table 6 displays the

estimated parameters obtained using SJ’s, Scott’s, and Silverman’s bandwidths for the MAR model, whereas

Table 7 presents the performance measures of the MEAR, LQAR, and MAR models, including the RMSE,

MAE, and CQF. The quantitative results are summarized as follows:

(a) Table 6 shows that SJ’s bandwidth outperforms the other two methods (Scott’s and Silverman’s) in

terms of RMSE for Canada, Japan, South Korea, and the U.S. The estimated coefficients are generally

similar across the different bandwidths for Canada, South Korea, and the U.S., whereas Japan exhibits

notable differences among the different bandwidths.

(b) Table 7 indicates that for the training sets of the four countries, the CQF for the MAR model consis-

tently has the smallest value. For the test set, the MAR model performs better than the MEAR and

LQAR models in terms of the CQF.

(c) The MAR model consistently achieves the best CQF and sometimes even the best RMSE and MAE.

This can be attributed to the robustness of the modal regression approach in handling unexpected

noise and outliers in the differenced data.

(d) The results obtained by the teacher-forcing method consistently outperform the forecast obtained by

the non-teacher-forcing method. This validates our earlier discussion on the difference between these

two methods, highlighting that the non-teacher-forcing method tends to accumulate forecast errors

over the forecast horizon, leading to less accurate predictions than the teacher-forcing method. □

<Insert Table 7 around here>

When comparing the performances of the different bandwidths for the four countries, it is evident that

SJ’s bandwidth consistently yields smaller RMSE values, indicating its superiority in forecasting confirmed

COVID-19 cases using the MAR method. Additionally, the smaller CQF values obtained by the MAR
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method compared with those obtained by the MEAR and LQAR methods demonstrate that the MAER and

LQAR methods are more sensitive to outliers and tend to accumulate forecasting errors gradually over time,

thereby affecting the overall forecast accuracy.

6 Conclusion

Since the outbreak of COVID-19, there has been a growing interest in analyzing its trend in the scientific

literature. Over the years, our understanding of the disease and its development has improved as we have

accumulated more data and gained more experience. In this context, the modal regression method has

emerged as a valuable statistical tool for handling noisy and skewed data to predict and analyze the COVID-

19 trend. This allows us to account for the characteristics and fluctuations in the data, leading to more

accurate predictions and insights into the dynamics of the disease.

This study analyzes the confirmed COVID-19 cases using the modal regression approach, which in-

volves four main steps. First, an objective function is formulated to evaluate the different forecasts for

a series, considering the estimation of conditional mean, median, and mode. The forecasts are evaluated

based on RMSE, MAE, and CQF metrics. Modal regression aims to optimize the CQF, whereas conditional

mean and median regressions optimize the RMSE and MAE, respectively. The CQF measures the probabil-

ity of a random variable falling within a forecasted interval, making the conditional mode function suitable

for optimizing the CQF. Second, the prediction models available in the literature are reviewed, focusing on

their application in modal regression. Two types of modelsâĂŤtime-trend and unit-rootâĂŤare examined

for their suitability in the modal regression framework. Third, simulations are performed to investigate the

properties of the modal regression. The simulations involve cross-sectional and unit-root data, and the con-

sistency of the modal regression is examined. It is discovered that the performance of the modal regression

critically depends on the choice of bandwidth used to estimate the density function. Notably, the results

demonstrate that SJ’s bandwidth, along with Scott’s and Silverman’s bandwidths, provides robust estima-

tion outcomes. Finally, the modal regression approach is applied to analyze the confirmed COVID-19 cases

in Canada, Japan, South Korea, and the U.S. The empirical analysis aims to forecast and analyze the trends

in COVID-19 cases using the modal regression framework, considering the characteristics and dynamics of

the data for these countries.

Several key findings emerged from our empirical analysis. First, the MR method consistently outper-

forms the other methods in terms of the CQF for the cumulative confirmed COVID-19 case data, regardless

of whether time-trend or unit-root models are considered. For all four countries (Canada, Japan, South
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Korea, and the U.S.), the CQF achieved through modal regression is consistently smaller than that of the

other methods, indicating better performance in terms of capturing the forecast uncertainty. Second, the

forecasts obtained through modal regression demonstrate superior capability in capturing the cyclical peaks

and bottoms of daily confirmed COVID-19 cases compared with those obtained through mean and median

regressions. This is attributed to the wider variation in the modal regression forecasts, which align more

closely with the actual cyclical patterns. In contrast, the forecasts from the mean and median regressions

tend to underestimate and overestimate the cyclical peaks and bottoms, respectively. This finding has impor-

tant economic implications, suggesting that modal forecasting can help governments avoid high risks when

formulating health policies related to COVID-19.

The research methodology employed in this study can be extended to analyze data from other countries

or explore other infectious diseases. The methodology does not assume specific characteristics of the data

from the four countries considered in this study and is established based on methodological considerations

related to modal regression. Therefore, it can be used to analyze various time-series data.

However, it is important to note that this study focuses on a single series, forecasting its future observa-

tions. It does not examine the interrelationship between two or more time-series variables. For instance, in

the case of nonstationary data such as confirmed COVID-19 cases, it would be valuable to investigate the

cointegration and relationships with other variables. Exploring these interrelationships could be a potential

direction for future research.

7 Appendix

Proof of Qn,h(θ
(k+1)) ≥ Qn,h(θ

(k)): For each iteration of the MEM algorithm described in Section 3.1,

the optimized objective function outcome gradually increases. In other words, for any positive integer k,

25



Qn,h(θ
(k+1)) ≥ Qn,h(θ

(k)). The proof is as follows: we note that

logQn,h

(
θ(k+1)

)
− logQn,h

(
θ(k)
)

= log
n∑

t=1

ϕh

(
Yt −m(Xt, θ

(k+1)))
)
− log

n∑
t=1

ϕh

(
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(k))
)

= log

[
n∑

t=1

ϕh

(
Yt −m(Xt, θ

(k+1))
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j=1 ϕh

(
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)]

= log

[
n∑

t=1

ϕh

(
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(
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(
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]

= log

[
n∑

t=1

π(t | θ(k))
ϕh

(
Yt −m(Xt, θ

(k+1))
)

ϕh

(
Yt −m(Xt, θ(k))

) ]

by noting that

π(t | θ(k)) =
ϕh

(
Yt −m(Xt, θ

(k))
)∑n

t=1 ϕh

(
Yt −m(Xt, θ(k))

) .
From this, we obtain

logQh

(
θ(k+1)

)
− logQh

(
θ(k)
)
≥

n∑
t=1

π(t | θ(k)) log

{
ϕh

(
Yt −m(Xt, θ

(k+1)
)
)

ϕh

(
Yt −m(Xt, θ(k)

)
)

}

by applying Jensen’s inequality. If we further apply the definition of θ(k+1) from the M-step,

n∑
t=1

π(t | θ(k)) log
{
ϕh

(
Yt −m(Xt, θ

(k+1)
)
)
}
≥

n∑
t=1

π(t | θ(k)) log
{
ϕh

(
Yt −m(Xt, θ

(k)
)
)
}
,

implying that

log
{
Qh

(
θ(k+1)

)}
− log

{
Qh

(
θ(k)
)}

≥ 0.

This completes the proof. □
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Hospital Beds
per 1,000 People

(as of 2020)

Health Expenditure Growth
between 2019 and 2020

(as % of GDP)

Cumulative Vaccinations
per 100 People

(as of Dec. 2022)

Fatality Rate
(as of Dec,2022)

Canada 2.79 1.99% pt. 247.84 1.1% (48,349)
Japan 12.63 0.15% pt. 285.44 0.2% (50,827)
Korea 12.65 0.22% pt. 250.19 0.1% (30,975)
U.S. 2.80 2.14% pt. 197.37 1.1% (1,083,362)

Table 1: MEDICAL STATISTICS ON COVID-19 FOR THE FOUR COUNTRIES.The data on Hospital
Beds is sourced from Trading Economics (https://tradingeconomics.com/country-list/
hospital-beds). The data on Health Expenditure is sourced from The World Bank (https://data.
worldbank.org/indicator). The data on cumulative vaccinations and fatality rate are sourced from
Our World in Data (https://ourworldindata.org/covid-vaccinations).

Method Parameter \ n 100 200 300 500 1,000

DGP1

MER
α1∗ 0.3381 0.1625 0.1074 0.0661 0.0311
β1∗ 1.0970 0.5511 0.3604 0.2270 0.1035

LQR
α2∗ 0.3677 0.1735 0.1259 0.0717 0.0346
β2∗ 1.2485 0.6062 0.4221 0.2450 0.1170

MR & SJ
α3∗ 0.4563 0.3721 0.3721 0.1467 0.0923
β3∗ 0.9167 0.8285 0.7511 0.5574 0.2566

MR & Scott
α3∗ 0.4662 0.3792 0.3784 0.1462 0.0914
β3∗ 0.9257 0.8849 0.7663 0.5667 0.2673

MR & Silverman
α3∗ 0.5047 0.4511 0.4200 0.1531 0.1008
β3∗ 1.1022 1.0236 0.8921 0.6430 0.2592

DGP2

MER
α4∗ 0.2541 0.1167 0.0791 0.0467 0.0231
β4∗ 0.7455 0.3613 0.2357 0.1331 0.0725

LQR
α5∗ 0.2818 0.1340 0.0918 0.0536 0.0271
β5∗ 0.8637 0.3867 0.2764 0.1669 0.0805

MR & SJ
α6∗ 1.9091 1.7029 1.3450 1.3166 1.2781
β6∗ 2.8691 2.5467 2.1244 2.0269 1.8912

MR & Scott
α6∗ 1.9723 1.7681 1.4101 1.4293 1.2901
β6∗ 2.7920 2.5719 2.2965 2.2910 1.9801

MR & Silverman
α6∗ 2.0121 1.7921 1.3771 1.3491 1.3291
β6∗ 2.8812 2.7021 2.3103 2.1310 1.9004

Table 2: THE MSES USING THE CROSS-SECTIONAL DATA SIMULATIONS. DGP1 is generated by sim-
ulating IID samples {(Xt, Yt) , i = 1, . . . , n} such that Yt = α∗ + β∗Xt + Ut, where α∗ = 0, β∗ = 2,
and Ut ∼ 0.5N(−2, 32) + 0.5N(2, 12), from which E (Yt | Xi) = 2Xt, median (Yt | Xi) = 2Xt + 1, and
mode (Yt | Xi) = 2Xt + 2. DGP2 is generated by simulating IID samples such that Yt = α∗ + β∗Xt + Ut,
where α∗ = 0, β∗ = 1, and Ut ∼ X 2

3 − 3, from which E (Yt | Xi) = Xt, median (Yt | Xi) = Xt − 0.63,
and mode (Yt | Xi) = Xt − 2. The simulation results are obtained by conducting 1,000 replications.
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Method Parameter \ n 100 200 300 500 1,000

MEAR
α7∗ 0.1472 0.0305 0.0284 0.0337 0.0382
β7∗ 0.0009 0.0000 0.0001 0.0000 0.0000

LQAR
α8∗ 0.4024 0.2732 0.1771 0.1185 0.1017
β8∗ 2.4436 1.3439 1.4007 1.2859 1.0010

MAR & SJ
α9∗ 0.2624 0.1978 0.1929 0.1561 0.0309
β9∗ 0.0009 0.0006 0.0007 0.0007 0.0000

MAR & Scott
α9∗ 0.2821 0.1799 0.2581 0.2178 0.0312
β9∗ 0.0009 0.0009 0.0011 0.0010 0.0000

MAR & Silverman
α9∗ 0.3819 0.2953 0.2734 0.2853 0.1339
β9∗ 0.0014 0.0009 0.0009 0.0007 0.0004

Table 3: THE MSES USING THE TIME-SERIES DATA SIMULATIONS. This table compares the perfor-
mances from different estimations: MEAR, LQAR, and MAR methods based upon the SJ’s, Scott’s, and
Silverman’s bandwidths. The simulated dataset {Yt : t = 1, . . . , n} is obtained from the following DGP:
Yt = α∗ + β∗Yt−1 + Ut, where α∗ = 0, β∗ = 1, and Ut ∼ 0.3N(−2, 32) + 0.2N(2, 22) + 0.5N(1, 12).
From this, E (Yt | Yt−1) = 0.3+Yt−1, median (Yt | Yt−1) = 0.75+Yt−1, and mode (Yt | Yt−1) = 1+Yt−1.
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Country Method
Training Set Test Set

RMSE MAE CQF RMSE MAE CQF

Canada

MER 0.0148 0.0118 0.0103 0.0318 0.0304 0.0298
LQR 0.0152 0.0111 0.0085 0.0354 0.0342 0.0332
MR 0.0148 0.0117 0.0102 0.0319 0.0306 0.0299

BMR 0.0063 0.0051 0.0038 0.0709 0.0531 0.0466
LPMR 0.0063 0.0052 0.0043 0.0171 0.0146 0.0124

Japan

MER 0.0303 0.0267 0.0275 0.0756 0.0749 0.0755
LQR 0.0326 0.0250 0.0168 0.0838 0.0832 0.0838
MR 0.0303 0.0265 0.0165 0.0758 0.0750 0.0757

BMR 0.0033 0.0027 0.0024 0.0083 0.0069 0.0045
LPMR 0.0031 0.0025 0.0023 0.0125 0.0115 0.0103

Korea

MER 0.0621 0.0551 0.0583 0.0961 0.0960 0.0958
LQR 0.0644 0.0543 0.0537 0.0643 0.0639 0.0619
MR 0.0706 0.0555 0.0496 0.0550 0.0541 0.0517

BMR 0.0043 0.0028 0.0014 0.0823 0.0690 0.0532
LPMR 0.0036 0.0026 0.0018 0.0870 0.0605 0.0399

U.S.

MER 0.0646 0.0531 0.0490 0.1238 0.1221 0.1295
LQR 0.0722 0.0486 0.0332 0.0912 0.0898 0.0947
MR 0.0749 0.0489 0.0336 0.0779 0.0765 0.0805

BMR 0.0072 0.0049 0.0035 0.0283 0.0221 0.0147
LPMR 0.0070 0.0047 0.0030 0.0251 0.0204 0.0147

Table 4: THE QUANTITATIVE RESULTS OF DIFFERENT ESTIMATION METHODS. This table evaluates
the efficacy of different regression methods for forecasting the cumulative confirmed COVID-19 cases from
February 8, 2022, to April 8, 2022. The results are measured by RMSE, MAE, and CQF.

Country
Before After

Dickey-Fuller p-value Reject Dickey-Fuller p-value Reject
Canada -3.0538 0.1516 No -6.4527 < 0.01 Yes
Japan -0.9009 0.9447 No -5.4706 < 0.01 Yes
Korea -1.9200 0.6064 No -5.5924 < 0.01 Yes
U.S. -4.0388 0.0151 No -5.8077 < 0.01 Yes

Table 5: THE ADF TEST RESULTS BEFORE AND AFTER DIFFERENCING THE ACCUMULATED CON-
FIRMED COVID-19 CASES. The considered dataset ranges from February 8, 2022, to April 8, 2022, and
the ADF test significance level is set to 0.01. To ensure the stationarity of the time series, we set the differ-
ence order as 3.
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Method Canada Japan Korea U.S.

SJ

RMSE
Training Set 0.1764 0.1350 0.1085 0.0355

Test Set 0.2857 0.0699 0.0701 0.0307

Coef

α∗ -0.0236 -0.0044 0.0000 0.0029
β1∗ -0.5224 -0.9021 -0.8679 -0.5925
β2∗ -0.3358 -0.8722 -1.0773 -0.6856
β3∗ -0.6016 -0.8328 -1.3416 -0.7422
β4∗ -1.1054 -0.7654 -1.3734 -0.8425
β5∗ -1.3693 -0.8430 -1.4871 -0.9307
β6∗ -1.3588 -0.7832 -1.2355 -0.9529

Scott

RMSE
Training Set 0.1779 0.1450 0.1279 0.0355

Test Set 0.2889 0.1044 0.0929 0.0308

Coef

α∗ -0.0234 0.0526 0.0035 0.0029
β1∗ -0.5289 -0.4999 -1.1798 -0.5953
β2∗ -0.3329 -0.9829 -1.0942 -0.6893
β3∗ -0.6020 -1.0668 -1.2720 -0.7473
β4∗ -1.1118 -1.1104 -1.1384 -0.8464
β5∗ -1.3744 -1.0587 -1.3406 -0.9316
β6∗ -1.3638 -0.9479 -1.0740 -0.9527

Silverman

RMSE
Training Set 0.1799 0.1506 0.1093 0.0354

Test Set 0.2907 0.1069 0.0806 0.0308

Coef

α∗ -0.0235 0.0509 -0.0088 0.0025
β1∗ -0.5364 -0.4543 -0.5419 -0.5885
β2∗ -0.3288 -0.9954 -0.6828 -0.6800
β3∗ -0.5997 -1.1023 -0.9043 -0.7340
β4∗ -1.1199 -1.1617 -0.7628 -0.8361
β5∗ -1.3785 -1.0871 -1.1533 -0.9277
β6∗ -1.3723 -0.9580 -0.9320 -0.9529

Table 6: THE QUANTITATIVE RESULTS OF DIFFERENT BANDWIDTH SELECTION METHODS FOR

COVID-19. The RMSE is computed by comparing the forecasts with the realized confirmed cases. Here,
α∗ denotes the intercept; and the lag coefficients are denoted as β1∗, β2∗, β3∗, β4∗, β5∗, and β6∗.
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Country Method
Training Set

Test Set
(Teacher Forcing)

Test Set
(Non-teacher Forcing)

RMSE MAE CQF RMSE MAE CQF RMSE MAE CQF

Canada
MEAR 0.1443 0.1145 0.1043 0.2206 0.1968 0.1784 0.2745 0.2243 0.1991
LQAR 0.1487 0.1120 0.0930 0.2494 0.2124 0.1898 0.2373 0.2004 0.1893
MAR 0.1764 0.1256 0.0664 0.2857 0.2338 0.1855 0.1981 0.1794 0.1855

Japan
MEAR 0.1151 0.0906 0.0656 0.0625 0.0535 0.0492 0.2359 0.2185 0.2776
LQAR 0.1201 0.0834 0.0510 0.0609 0.0487 0.0416 0.3254 0.3039 0.2822
MAR 0.1350 0.0883 0.0404 0.0699 0.0538 0.0396 0.3796 0.3574 0.2541

Korea
MEAR 0.1027 0.0647 0.0348 0.0757 0.0593 0.0400 0.0675 0.0532 0.0748
LQAR 0.1059 0.0624 0.0349 0.0967 0.0791 0.0806 0.0835 0.0707 0.0819
MAR 0.1085 0.0654 0.0217 0.0701 0.0506 0.0360 0.0781 0.0653 0.0654

U.S.
MEAR 0.0342 0.0256 0.0197 0.0303 0.0211 0.0136 0.0302 0.0225 0.0135
LQAR 0.0348 0.0247 0.0189 0.0315 0.0219 0.0168 0.0463 0.0295 0.0180
MAR 0.0355 0.0251 0.0157 0.0307 0.0198 0.0133 0.0291 0.0212 0.0141

Table 7: THE QUANTITATIVE RESULTS OF THE FORECAST METHODS. This table compares the perfor-
mances of the MEAR, LQR, and MAR methods applied to the cumulative confirmed COVID-19 cases. The
data range from February 8, 2022, to April 8, 2022. For the test dataset, the teacher-forcing and non-teacher-
forcing methods are separately applied.
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Figure 1: THE PROBABILITY DENSITY FUNCTION OF THE ERROR DISTRIBUTION IN THE DGPS. The
skewed error of DGP1 is generated from Ut ∼ 0.5N(−2, 32) + 0.5N(2, 12). The skewed error of DGP2 is
generated from Ut ∼ X 2
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Figure 2: THE SCATTER PLOT AND REGRESSION LINES. 200 data points are generated from DGP1:
Yt = α∗ + β∗Xt +Ut, where α∗ = 0, β∗ = 2 and Ut ∼ 0.5N(−2, 32) + 0.5N(2, 12). The red, orange, and
blue lines represent the conditional mode, median, and mean functions, respectively. Other 200 data points
are generated from DGP2: Yt = α∗+β∗Xt+Ut, where α∗ = 0, β∗ = 1 and Ut ∼ X 2

3 −3. The red, orange,
and blue lines represent the modal, median, and mean regressions, respectively.
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Figure 3: EMPIRICAL DENSITY OF THE MODAL REGRESSION COEFFICIENTS FROM THE CROSS-
SECTIONAL DATA. The four figures display the probability density of the estimated coefficients α̂n and
β̂n for the cross-sectional data separately.

37



0.0

0.7

1.4

2.1

0.0 0.5 1.0 1.5 2.0
α̂

colour 100 200 300 500 1000

(a) DGP1

0

110

220

330

0.98 1.00 1.02

β̂

colour 100 200 300 500 1000

(b) DGP2

Figure 4: EMPIRICAL DENSITY OF THE MODAL REGRESSION COEFFICIENTS FROM THE TIME-SERIES

DATA. The two figures show the probability density of the estimated coefficients α̂n and β̂n of the time-
series data.
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Figure 5: THE SCATTER PLOT OF ALL DATA POINTS AND THE REGRESSION LINES FROM THE DIF-
FERENT REGRESSION METHODS. This figure shows different forecasts from the five regression methods:
MER, LQR, MR, BMR, and LPMR. The vertical axis denotes the cumulative confirmed COVID-19 cases.
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Figure 6: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS

ON THE ACCUMULATED CONFIRMED CASES. The red, orange, and blue lines represent the forecasting
made by the MEAR, LQAR, and MAR methods, respectively, using the teacher-forcing and non-teacher-
forcing methods.
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Figure 7: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS

ON THE DAILY CONFIRMED CASES. The red, orange, and blue lines represent the forecasting made by the
MEAR, LQAR, and MAR methods, respectively, using the teacher-forcing and non-teacher-forcing methods
with SJ’s bandwidth.
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Figure 8: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS

ON THE DAILY CONFIRMED CASES. The red, orange, and blue lines represent the forecasting made by the
MEAR, LQAR, and MAR methods, respectively, using the teacher-forcing method and Scott’s bandwidth.
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Figure 9: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS

ON THE DAILY CONFIRMED CASES. The red, orange, and blue lines represent the forecasting made by
the MEAR, LQAR, and MAR methods, respectively, using the teacher-forcing method and Silverman’s
bandwidth.

41


	Introduction
	Literature Review and Motivation
	Method of Modal Regression
	Modal Regression
	Extension of the Modal Regression

	Evaluation of the Modal Regression by Simulation
	Simulation Using Cross-Sectional Data
	Simulation Using Non-Stationary Data

	Empirical Analysis
	Forecasting the Confirmed COVID-19 Cases by Trend Fitting
	Forecasting the Confirmed COVID-19 Cases by Modal Autoregression

	Conclusion
	Appendix

